Semi-parametric estimation of multivariate extreme expectiles

[1]  V. Maume-Deschamps,et al.  Extremes for multivariate expectiles , 2018, Statistics & Risk Modeling.

[2]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[3]  K. Ng,et al.  ASYMPTOTIC EXPANSIONS OF GENERALIZED QUANTILES AND EXPECTILES FOR EXTREME RISKS , 2015, Probability in the Engineering and Informational Sciences.

[4]  Aldo Goia,et al.  An introduction to recent advances in high/infinite dimensional statistics , 2016, J. Multivar. Anal..

[5]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[6]  M. Hofert,et al.  MULTIVARIATE GEOMETRIC TAIL- AND RANGE-VALUE-AT-RISK , 2019, ASTIN Bulletin.

[7]  É. Marceau,et al.  Bivariate lower and upper orthant value-at-risk , 2013 .

[8]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[9]  L. Haan,et al.  Extreme value theory , 2006 .

[10]  Areski Cousin,et al.  On multivariate extensions of Value-at-Risk , 2011, J. Multivar. Anal..

[11]  Johanna F. Ziegel,et al.  COHERENCE AND ELICITABILITY , 2013, 1303.1690.

[12]  Marc Henry,et al.  COMONOTONIC MEASURES OF MULTIVARIATE RISKS , 2009, 2102.04175.

[13]  Paul Deheuvels,et al.  Almost sure convergence of the Hill estimator , 1988, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  C. Prieur,et al.  Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory , 2013 .

[15]  R. Lillo,et al.  A directional multivariate value at risk , 2015, 1502.00908.

[16]  M. Hofert,et al.  Multivariate geometric expectiles , 2017, 1704.01503.

[17]  S. Girard,et al.  Estimation of tail risk based on extreme expectiles , 2016 .

[18]  M. Fukushima,et al.  A modified BFGS method and its global convergence in nonconvex minimization , 2001 .

[19]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[20]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[21]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[22]  Masao Fukushima,et al.  On the Global Convergence of the BFGS Method for Nonconvex Unconstrained Optimization Problems , 2000, SIAM J. Optim..

[23]  Valeria Bignozzi,et al.  On elicitable risk measures , 2015 .

[24]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[25]  Yasuhiro Yamai,et al.  Value-at-risk versus expected shortfall: A practical perspective , 2005 .

[26]  Xiwen Lu,et al.  Global convergence of BFGS and PRP methods under a modified weak Wolfe–Powell line search , 2017 .

[27]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[28]  A. Müller,et al.  Generalized Quantiles as Risk Measures , 2013 .

[29]  J. Segers,et al.  An estimator of the stable tail dependence function based on the empirical beta copula , 2017, Extremes.

[30]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[31]  THE FRAILTY AND THE ARCHIMEDEAN STRUCTURE OF THE GENERAL MULTIVARIATE PARETO DISTRIBUTIONS , 2007 .

[32]  Toshinao Yoshiba,et al.  On the Validity of Value-at-Risk: Comparative Analyses with Expected Shortfall , 2002 .

[33]  I. Weissman Estimation of Parameters and Large Quantiles Based on the k Largest Observations , 1978 .

[34]  Fabio Bellini,et al.  Risk management with expectiles , 2014 .

[35]  Stéphane Girard,et al.  Nonparametric estimation of the conditional tail copula , 2015, J. Multivar. Anal..

[36]  C. Prieur,et al.  Estimation of the multivariate conditional tail expectation for extreme risk levels: Illustration on environmental data sets , 2018, Environmetrics.

[37]  V. Maume-Deschamps,et al.  Copulas checker-type approximations: Application to quantiles estimation of sums of dependent random variables , 2020, Communications in Statistics - Theory and Methods.

[38]  Special Issue: Recent Developments in Quantitative Risk Management , 2016 .

[39]  S. Girard,et al.  Extreme M-quantiles as risk measures: From $L^{1}$ to $L^{p}$ optimization , 2019, Bernoulli.

[40]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[41]  Stéphane Girard,et al.  Functional nonparametric estimation of conditional extreme quantiles , 2010, J. Multivar. Anal..

[42]  S. Girard,et al.  On kernel smoothing for extremal quantile regression , 2012, 1312.5123.

[43]  A consistent estimator to the orthant-based tail value-at-risk , 2018 .

[44]  É. Marceau,et al.  Vector-Valued Tail Value-at-Risk and Capital Allocation , 2016 .

[45]  S. Girard,et al.  Extreme geometric quantiles in a multivariate regular variation framework , 2015 .

[46]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[47]  Paul Embrechts,et al.  Bounds for functions of multivariate risks , 2006 .

[48]  Impact of Dependence on Some Multivariate Risk Indicators , 2015, 1507.01175.

[49]  L. Gardes,et al.  An integrated functional Weissman estimator for conditional extreme quantiles , 2017 .

[50]  Chen Zhou,et al.  Estimation of the marginal expected shortfall: the mean when a related variable is extreme , 2012 .

[51]  A. Usseglio‐Carleve Estimation of conditional extreme risk measures from heavy-tailed elliptical random vectors , 2018, 1801.09884.

[52]  Mohamed Chaouch,et al.  Design-based estimation for geometric quantiles with application to outlier detection , 2010, Comput. Stat. Data Anal..