Dimension of chaotic attractors
暂无分享,去创建一个
J. Yorke | J. D. Farmer | E. Ott | J. Farmer
[1] James A. Yorke,et al. The Lyapunov dimension of a nowhere differentiable attracting torus , 1984, Ergodic Theory and Dynamical Systems.
[2] T. Janssen,et al. Bifurcations of lattice structures , 1983 .
[3] A. Chorin. The evolution of a turbulent vortex , 1982 .
[4] J. D. Farmer,et al. Information Dimension and the Probabilistic Structure of Chaos , 1982 .
[5] A. Wolf,et al. Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .
[6] N. Packard,et al. Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise , 1982 .
[7] J. Yorke,et al. CHAOTIC ATTRACTORS IN CRISIS , 1982 .
[8] J. D. Farmer,et al. Chaotic attractors of an infinite-dimensional dynamical system , 1982 .
[9] L. Young. Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.
[10] J. D. Farmer,et al. Dimension, Fractal Measures, and Chaotic Dynamics , 1982 .
[11] E. Ott. Strange attractors and chaotic motions of dynamical systems , 1981 .
[12] J. D. Farmer,et al. ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS , 1981 .
[13] F. Ledrappier,et al. Some relations between dimension and Lyapounov exponents , 1981 .
[14] Robert Shaw. Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .
[15] J. Yorke,et al. Chaotic behavior and fluid dynamics , 1981 .
[16] E. Ott,et al. Dimension of Strange Attractors , 1980 .
[17] G. Benettin,et al. Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .
[18] I. Shimada,et al. A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .
[19] H. Swinney,et al. Hydrodynamic instabilities and the transition to turbulence , 1978 .
[20] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[21] I. Good,et al. Fractals: Form, Chance and Dimension , 1978 .
[22] B. Mandelbrot. Lecture V Fractals and turbulence: Attractors and dispersion , 1977 .
[23] G. Benettin,et al. Kolmogorov Entropy and Numerical Experiments , 1976 .
[24] D. Ruelle,et al. The ergodic theory of AxiomA flows , 1975 .
[25] D. Ruelle,et al. The Ergodic Theory of Axiom A Flows. , 1975 .
[26] B. Mandelbrot. Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.
[27] Y. Sinai. GIBBS MEASURES IN ERGODIC THEORY , 1972 .
[28] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[29] P. Billingsley,et al. Ergodic theory and information , 1966 .
[30] H. Eggleston. The fractional dimension of a set defined by decimal properties , 1949 .
[31] I. Good. The fractional dimensional theory of continued fractions , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.
[32] A. Besicovitch. On the sum of digits of real numbers represented in the dyadic system. , 1935 .
[33] F. Hausdorff. Dimension und äußeres Maß , 1918 .