Dimension of chaotic attractors

[1]  James A. Yorke,et al.  The Lyapunov dimension of a nowhere differentiable attracting torus , 1984, Ergodic Theory and Dynamical Systems.

[2]  T. Janssen,et al.  Bifurcations of lattice structures , 1983 .

[3]  A. Chorin The evolution of a turbulent vortex , 1982 .

[4]  J. D. Farmer,et al.  Information Dimension and the Probabilistic Structure of Chaos , 1982 .

[5]  A. Wolf,et al.  Impracticality of a box-counting algorithm for calculating the dimensionality of strange attractors , 1982 .

[6]  N. Packard,et al.  Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise , 1982 .

[7]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[8]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[9]  L. Young Dimension, entropy and Lyapunov exponents , 1982, Ergodic Theory and Dynamical Systems.

[10]  J. D. Farmer,et al.  Dimension, Fractal Measures, and Chaotic Dynamics , 1982 .

[11]  E. Ott Strange attractors and chaotic motions of dynamical systems , 1981 .

[12]  J. D. Farmer,et al.  ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS , 1981 .

[13]  F. Ledrappier,et al.  Some relations between dimension and Lyapounov exponents , 1981 .

[14]  Robert Shaw Strange Attractors, Chaotic Behavior, and Information Flow , 1981 .

[15]  J. Yorke,et al.  Chaotic behavior and fluid dynamics , 1981 .

[16]  E. Ott,et al.  Dimension of Strange Attractors , 1980 .

[17]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[18]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[19]  H. Swinney,et al.  Hydrodynamic instabilities and the transition to turbulence , 1978 .

[20]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[21]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[22]  B. Mandelbrot Lecture V Fractals and turbulence: Attractors and dispersion , 1977 .

[23]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[24]  D. Ruelle,et al.  The ergodic theory of AxiomA flows , 1975 .

[25]  D. Ruelle,et al.  The Ergodic Theory of Axiom A Flows. , 1975 .

[26]  B. Mandelbrot Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier , 1974, Journal of Fluid Mechanics.

[27]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[28]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[29]  P. Billingsley,et al.  Ergodic theory and information , 1966 .

[30]  H. Eggleston The fractional dimension of a set defined by decimal properties , 1949 .

[31]  I. Good The fractional dimensional theory of continued fractions , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  A. Besicovitch On the sum of digits of real numbers represented in the dyadic system. , 1935 .

[33]  F. Hausdorff Dimension und äußeres Maß , 1918 .