A parametric sensitivity constrained linear quadratic controller

The purpose of this paper is to give a new insight on a suboptimal linear quadratic control taking explicitly into account the parametric uncertainties. System sensitivity to parameter variations is handled through including a quadratic trajectory parametric sensitivity term in the cost functional to be minimized. The paper main contribution is twofold: - Using a descriptor system approach, the paper shows that the underlying singular linear-quadratic optimal control problem leads to a non-standard Riccati equation. - A solution to the proposed control problem is given based on a connection to the so-called Lur'e matrix equations. Some examples are given in order to illustrate the interest of the approach.

[1]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  E. Kreindler,et al.  Formulation of the minimum trajectory sensitivity problem , 1969 .

[4]  Philippe Chevrel,et al.  A parametric insensitive H2 control design approach , 2004 .

[5]  Alan J. Laub,et al.  The linear-quadratic optimal regulator for descriptor systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[6]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[7]  M. M. Newmann,et al.  On attempts to reduce the sensitivity of the optimal linear regulator to a parameter change , 1970 .

[8]  Timo Reis,et al.  Lur’e equations and even matrix pencils , 2011 .

[9]  João Yoshiyuki Ishihara,et al.  The full information and state feedback H2 optimal controllers for descriptor systems , 2003, Autom..

[10]  Kiyotsugu Takaba,et al.  H2 Output Feedback Control for Descriptor Systems , 1998, Autom..

[11]  M. M. Newmann,et al.  Design algorithms for a sensitivity constrained suboptimal regulator , 1977 .

[12]  Vlad Ionescu,et al.  GENERALIZED CONTINUOUS-TIME RICCATI THEORY , 1996 .

[13]  D. Kyr,et al.  A parametric LQ approach to multiobjective control system design , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[14]  Lorenzo Ntogramatzidis,et al.  The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control , 2014, Autom..

[15]  Philippe Chevrel,et al.  A CONVEX METHOD FOR THE PARAMETRIC INSENSITIVE H2 CONTROL PROBLEM , 2005 .

[16]  Philippe Chevrel,et al.  A SOLUTION TO THE INSENSITIVE H2 PROBLEM AND ITS APPLICATION TO AUTOMOTIVE CONTROL DESIGN , 2002 .

[17]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .