A parametric sensitivity constrained linear quadratic controller
暂无分享,去创建一个
[1] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[2] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[3] E. Kreindler,et al. Formulation of the minimum trajectory sensitivity problem , 1969 .
[4] Philippe Chevrel,et al. A parametric insensitive H2 control design approach , 2004 .
[5] Alan J. Laub,et al. The linear-quadratic optimal regulator for descriptor systems , 1985, 1985 24th IEEE Conference on Decision and Control.
[6] J. Willems. Least squares stationary optimal control and the algebraic Riccati equation , 1971 .
[7] M. M. Newmann,et al. On attempts to reduce the sensitivity of the optimal linear regulator to a parameter change , 1970 .
[8] Timo Reis,et al. Lur’e equations and even matrix pencils , 2011 .
[9] João Yoshiyuki Ishihara,et al. The full information and state feedback H2 optimal controllers for descriptor systems , 2003, Autom..
[10] Kiyotsugu Takaba,et al. H2 Output Feedback Control for Descriptor Systems , 1998, Autom..
[11] M. M. Newmann,et al. Design algorithms for a sensitivity constrained suboptimal regulator , 1977 .
[12] Vlad Ionescu,et al. GENERALIZED CONTINUOUS-TIME RICCATI THEORY , 1996 .
[13] D. Kyr,et al. A parametric LQ approach to multiobjective control system design , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.
[14] Lorenzo Ntogramatzidis,et al. The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control , 2014, Autom..
[15] Philippe Chevrel,et al. A CONVEX METHOD FOR THE PARAMETRIC INSENSITIVE H2 CONTROL PROBLEM , 2005 .
[16] Philippe Chevrel,et al. A SOLUTION TO THE INSENSITIVE H2 PROBLEM AND ITS APPLICATION TO AUTOMOTIVE CONTROL DESIGN , 2002 .
[17] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .