Pure Gaussian quantum states from passive Hamiltonians and an active local dissipative process

We investigate the problem of preparing a pure Gaussian state via reservoir engineering. In particular, we consider a linear quantum system with a passive Hamiltonian and with a single reservoir which acts only on a single site of the system. We then give a full parametrization of the pure Gaussian states that can be prepared by this type of quantum system.

[1]  I. Petersen,et al.  Preparation of pure Gaussian states via cascaded quantum systems , 2014, 2014 IEEE Conference on Control Applications (CCA).

[2]  Charles R. Johnson,et al.  Matrix Analysis, 2nd Ed , 2012 .

[3]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  Sudarshan,et al.  Gaussian pure states in quantum mechanics and the symplectic group. , 1988, Physical review. A, General physics.

[5]  A. Clerk,et al.  Two-mode squeezed states in cavity optomechanics via engineering of a single reservoir , 2014, 1404.2672.

[6]  David Vitali,et al.  Steady-state nested entanglement structures in harmonic chains with single-site squeezing manipulation , 2015, 1507.02836.

[7]  Shan Ma,et al.  Linear quantum systems with diagonal passive Hamiltonian and a single dissipative channel , 2015, Syst. Control. Lett..

[8]  D. Bernstein Matrix Mathematics: Theory, Facts, and Formulas , 2009 .

[9]  Gerardo Adesso,et al.  Generic entanglement and standard form for N-mode pure Gaussian states. , 2006, Physical review letters.

[10]  Naoki Yamamoto,et al.  Dissipation-induced pure Gaussian state , 2011, 1103.5449.

[11]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[12]  Naoki Yamamoto,et al.  Deterministic generation of Gaussian pure states in a quasilocal dissipative system , 2012, 1211.5788.

[13]  Shan Ma,et al.  Cascade and locally dissipative realizations of linear quantum systems for pure Gaussian state covariance assignment , 2016, Autom..

[14]  J. F. Poyatos,et al.  Quantum Reservoir Engineering with Laser Cooled Trapped Ions. , 1996, Physical review letters.

[15]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[16]  Nicolas C. Menicucci,et al.  Passive interferometric symmetries of multimode Gaussian pure states , 2013, 1310.4831.

[17]  P. L. Knight,et al.  Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement , 2002 .

[18]  Ian R. Petersen,et al.  Cascade cavity realization for a class of complex transfer functions arising in coherent quantum feedback control , 2009, 2009 European Control Conference (ECC).

[19]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[20]  Mi-Ching Tsai,et al.  Robust and Optimal Control , 2014 .

[21]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[22]  F. Illuminati,et al.  Extremal entanglement and mixedness in continuous variable systems , 2004, quant-ph/0402124.

[23]  Nicolas C. Menicucci,et al.  Graphical calculus for Gaussian pure states , 2010, 1007.0725.

[24]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[25]  Naoki Yamamoto,et al.  Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .