Prediction of engineering properties of fly ash-based geopolymer using artificial neural networks

[1]  Kejin Wang,et al.  Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer , 2019 .

[2]  J. Gagné Literature Review , 2018, Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine.

[3]  Aminul Islam Laskar,et al.  Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network , 2015 .

[4]  Mehrzad Mohabbi Yadollahi,et al.  Prediction of compressive strength of geopolymer composites using an artificial neural network , 2015 .

[5]  Kun Saptohartyadi Marhadi,et al.  Using Johnson Distribution for Automatic Threshold Setting in Wind Turbine Condition Monitoring System , 2014 .

[6]  Abd Elmoaty M. Abd Elmoaty,et al.  Prediction of concrete compressive strength due to long term sulfate attack using neural network , 2014 .

[7]  D. Bondar Use of a Neural Network to Predict Strength and Optimum Compositions of Natural Alumina-Silica-Based Geopolymers , 2014 .

[8]  Kaveh Ahangari,et al.  The Prediction of Concrete Temperature during Curing Using Regression and Artificial Neural Network , 2013 .

[9]  Sakshi Gupta,et al.  Using Artificial Neural Network to Predict the Compressive Strength of Concrete containing Nano-silica , 2013 .

[10]  Ali Nazari,et al.  RETRACTED ARTICLE: Artificial neural networks application to predict the compressive damage of lightweight geopolymer , 2012, Neural Computing and Applications.

[11]  Kejin Wang,et al.  Prediction of Pavement Concrete Strength Development, Joint Sawing, and Opening Time Using FEMLAB , 2012 .

[12]  Abdulkadir Karacı,et al.  Prediction of the effect of varying cure conditions and w/c ratio on the compressive strength of concrete using artificial neural networks , 2011, Neural computing & applications (Print).

[13]  Yadolah Ganjkhanlou,et al.  Modeling of Compressive Strength of Metakaolin Based Geopolymers by The Use of Artificial Neural Network RESEARCH NOTE) , 2010 .

[14]  Giovanni Seni,et al.  Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions , 2010, Ensemble Methods in Data Mining.

[15]  Okan Karahan,et al.  Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete , 2009, Adv. Eng. Softw..

[16]  Ángel Palomo,et al.  Alkali–aggregate reaction in activated fly ash systems , 2007 .

[17]  Rubina Chaudhary,et al.  Mechanism of geopolymerization and factors influencing its development: a review , 2007 .

[18]  Robert Otto Rasmussen,et al.  Developing a Simple and Rapid Test for Monitoring the Heat Evolution of Concrete Mixtures for Both Laboratory and Field Applications , 2007 .

[19]  R. Černý,et al.  Properties of Alkali Activated Aluminosilicate Material after Thermal Load , 2006 .

[20]  Manish A. Kewalramani,et al.  Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks , 2006 .

[21]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[22]  P. Svoboda,et al.  CONCRETE BASED ON FLY ASH GEOPOLYMERS , 2006 .

[23]  J. Deventer,et al.  Understanding the relationship between geopolymer composition, microstructure and mechanical properties , 2005 .

[24]  Á. Palomo,et al.  Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model , 2005 .

[25]  D Hardjito,et al.  Fly Ash-Based Geopolymer Concrete , 2005 .

[26]  D. Feng,et al.  Ultrasound enhanced geopolymerisation , 2004 .

[27]  D. Roy,et al.  Chemical Activation of Low Calcium Fly Ash Part II: Effect of Mineralogical Composition on Alkali Activation , 2001 .