Set choice problems with incomplete information about the preferences of the decision maker

We consider the problem of selecting a predetermined number of objects from a given finite set. It is assumed that the preferences of the decision maker on this set are only partially known. Our solution approach is based on the notions of optimal and non-dominated subsets. The properties of such subsets and the objects they contain are investigated. The implementation of the developed approach is discussed and illustrated by various examples.

[1]  Salvador Barberà,et al.  Voting by Committees , 1991 .

[2]  P. Gärdenfors Manipulation of social choice functions , 1976 .

[3]  J. Dombi,et al.  A method for determining the weights of criteria: the centralized weights , 1986 .

[4]  V. V. Podinovskii Decision under Multiple Estimates for the Importance Coefficients of Criteria and Probabilities of Values of Uncertain Factors in the Aim Function , 2004 .

[5]  V. V. Podinovski,et al.  The quantitative importance of criteria For MCDA , 2002 .

[6]  Pierre-Yves Schobbens,et al.  Operators and Laws for Combining Preference Relations , 2002, J. Log. Comput..

[7]  Dennis J. Packard,et al.  A uniqueness result for extending orders; with application to collective choice as inconsistency resolution , 1984 .

[8]  Peter C. Fishburn,et al.  Binary interactions and subset choice , 1996 .

[9]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[10]  A. Sen,et al.  Collective Choice and Social Welfare , 2017 .

[11]  W. Cook,et al.  A multiple criteria decision model with ordinal preference data , 1991 .

[12]  Raimo P. Hämäläinen,et al.  Preference Assessment by Imprecise Ratio Statements , 1992, Oper. Res..

[13]  Zeshui Xu,et al.  A survey of preference relations , 2007, Int. J. Gen. Syst..

[14]  Gordon B. Hazen,et al.  Partial Information, Dominance, and Potential Optimality in Multiattribute Utility Theory , 1986, Oper. Res..

[15]  Stanley Zionts,et al.  Multiple Criteria Decision Making in the New Millennium , 2001 .

[16]  Oleg I. Larichev,et al.  Verbal Decision Analysis for Unstructured Problems , 1997 .

[17]  V. V. Podinovskii,et al.  Multi-criterion problems with uniform equivalent criteria , 1975 .

[18]  Walter Bossert,et al.  On the extension of preferences over a set to the power set: An axiomatic characterization of a quasi-ordering , 1989 .

[19]  F. Fernández,et al.  Multi-criteria analysis with partial information about the weighting coefficients , 1995 .

[20]  Peter C. Fishburn,et al.  Decision And Value Theory , 1965 .

[21]  F. H. Barron,et al.  SMARTS and SMARTER: Improved Simple Methods for Multiattribute Utility Measurement , 1994 .

[22]  Ronen I. Brafman,et al.  On Graphical Modeling of Preference and Importance , 2011, J. Artif. Intell. Res..

[23]  D. Bouyssou,et al.  Utility Maximization, Choice and Preference , 2002 .

[24]  P. Fishburn Signed orders and power set extensions , 1992 .

[25]  B. Peleg,et al.  A note on the extension of an order on a set to the power set , 1984 .

[26]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[27]  Vladislav V. Podinovski,et al.  Interval articulation of superiority and precise elicitation of priorities , 2007, Eur. J. Oper. Res..

[28]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .