Criteria for exact qudit universality

We describe criteria for implementation of quantum computation in qudits. A qudit is a d-dimensional system whose Hilbert space is spanned by states vertical bar 0>, vertical bar 1>, ..., vertical bar d-1>. An important earlier work [A. Muthukrishnan and C.R. Stroud, Jr., Phys. Rev. A 62, 052309 (2000)] describes how to exactly simulate an arbitrary unitary on multiple qudits using a 2d-1 parameter family of single qudit and two qudit gates. That technique is based on the spectral decomposition of unitaries. Here we generalize this argument to show that exact universality follows given a discrete set of single qudit Hamiltonians and one two-qudit Hamiltonian. The technique is related to the QR-matrix decomposition of numerical linear algebra. We consider a generic physical system in which the single qudit Hamiltonians are a small collection of H{sub jk}{sup x}=({Dirac_h}/2{pi}){omega}(vertical bar k> <d-1,d-1 vertical bar is also allowed. We discuss implementation in the eight dimensional ground electronic states of {sup 87}Rb and construct an optimal gate sequence using Raman laser pulses.« less

[1]  C. Helstrom Quantum detection and estimation theory , 1969 .

[2]  A. Vlasov Noncommutative tori and universal sets of nonbinary quantum gates , 2000, quant-ph/0012009.

[3]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[4]  Michael Spanner,et al.  Strong-field molecular alignment for quantum logic and quantum control , 2003 .

[5]  Entanglement interferometry for precision measurement of atomic scattering properties. , 2003, Physical review letters.

[6]  Goong Chen,et al.  Mathematics of Quantum Computation , 2002 .

[7]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[8]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[9]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[10]  George Cybenko,et al.  Reducing quantum computations to elementary unitary operations , 2001, Comput. Sci. Eng..

[11]  B. Sanders,et al.  Quantum encodings in spin systems and harmonic oscillators , 2001, quant-ph/0109066.

[12]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Measuring the quantum state of a large angular momentum. , 2001, Physical review letters.

[15]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  G. K. Brennen,et al.  Quantum logic for trapped atoms via molecular hyperfine interactions , 2002 .

[17]  V. Ramakrishna,et al.  Constructive control of quantum systems using factorization of unitary operators , 2002 .

[18]  Stig Stenholm,et al.  Generalized measurements of atomic qubits , 2001 .

[19]  Martin Rötteler,et al.  Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .

[20]  Quantum state control via trap-induced shape resonance in ultracold atomic collisions. , 2003, Physical review letters.

[21]  Igor L. Markov,et al.  Asymptotically optimal circuits for arbitrary n-qubit diagonal comutations , 2004, Quantum Inf. Comput..

[22]  Jr.,et al.  Multivalued logic gates for quantum computation , 2000, quant-ph/0002033.

[23]  Andrew D Greentree,et al.  Maximizing the Hilbert space for a finite number of distinguishable quantum states. , 2004, Physical review letters.