High-precision QEC values of superallowed 0+ → 0+β-emitters 46Cr, 50Fe and 54Ni

Abstract Short-lived 46 Cr, 50 Fe and 54 Ni were studied by isochronous mass spectrometry at the HIRFL-CSR facility in Lanzhou. The measured precision mass excesses ( M E ) of 46 Cr, 50 Fe and 54 Ni are − 29471 ( 11 )  keV , − 34477 ( 6 )  keV and − 39278 ( 4 )  keV , respectively. The superallowed 0 + → 0 + β -decay Q values were derived to be Q EC ( Cr 46 ) = 7604 ( 11 )  keV , Q EC ( Fe 50 ) = 8150 ( 6 )  keV and Q EC ( Ni 54 ) = 8731 ( 4 )  keV . The values for 50 Fe and 54 Ni are by one order of magnitude more precise than the adopted literature values. By combining the existing half-lives and branching ratios, we obtained the corrected F t values to be F t ( Fe 50 ) = 3103 ( 70 )  s and F t ( Ni 54 ) = 3076 ( 50 )  s . The main contribution to the F t uncertainties is now due to β -decay branching ratios, still, more high-precision measurements of the half-lives, the masses, and especially the branching ratios are needed in order to satisfy the requirements for a stringent CVC test.

[1]  H Chen,et al.  Identification of the Lowest T =2, Jπ =0+ Isobaric Analog State in 52Co and Its Impact on the Understanding of β-Decay Properties of52Ni , 2016, 1610.09772.

[2]  R. Tribble,et al.  Mass measurements of the proton-rich nuclei /sup 50/Fe and /sup 54/Ni , 1977 .

[3]  Klaus Blaum,et al.  Charge and frequency resolved isochronous mass spectrometry and the mass of 51Co , 2014 .

[4]  Ke Yue,et al.  A high performance Time-of-Flight detector applied to isochronous mass measurement at CSRe , 2010 .

[5]  M Petri,et al.  Lifetime measurement of the 2(1)+ state in 20C. , 2011, Physical review letters.

[6]  D. Bazin,et al.  LISE++: Radioactive beam production with in-flight separators , 2008 .

[7]  Mei Wang,et al.  The NUBASE2016 evaluation of nuclear properties , 2012 .

[8]  O. Klepper,et al.  First isochronous mass spectrometry at the experimental storage ring ESR , 2000 .

[9]  Takayoshi Suzuki,et al.  β decay of the exotic Tz=-2 nuclei Fe 48, Ni 52, and Zn 56 , 2016 .

[10]  C. Scheidenberger,et al.  Charge states of relativistic heavy ions in matter , 1998 .

[11]  Y Liu,et al.  Direct mass measurements of short-lived A=2Z-1 nuclides (63)Ge, (65)As, (67)Se, and (71)Kr and their impact on nucleosynthesis in the rp process. , 2011, Physical review letters.

[12]  J. Hardy,et al.  Theoretical corrections and world data for the superallowed f t values in the β decays of Ti 42 , Cr 46 , Fe 50 , and Ni 54 , 2015, 1510.03793.

[13]  M. Ramsey-Musolf,et al.  Electric Dipole Moments: A Global Analysis , 2014, 1407.1064.

[14]  Wei Zhang,et al.  The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou , 2002 .

[15]  J. Rissanen,et al.  Mass measurements in the vicinity of the doubly magic waiting point 56Ni , 2010, 1007.0978.

[16]  A. H. Wapstra,et al.  The AME2012 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[17]  J. Hardy,et al.  Comparative tests of isospin-symmetry-breaking corrections to superallowed $0^+ -> 0^+$ nuclear $\beta$ decay , 2010, 1007.5343.

[18]  Krzysztof Piotr Rykaczewski,et al.  The GSI projectile fragment separator (FRS): A Versatile magnetic system for relativistic heavy ions , 1992 .

[19]  X. Zhang,et al.  Precision isochronous mass measurements at the storage ring CSRe in Lanzhou , 2011 .

[20]  J. Hardy,et al.  Superallowed 0 + → 0 + nuclear β decays: 2014 critical survey, with precise results for V u d and CKM unitarity , 2014, 1411.5987.

[21]  R. Schectman,et al.  An investigation of proton-rich nuclei and other products from the bombardment of 24Mg, 28Si AND 32S by 16O ions , 1972 .

[22]  N. Kurz,et al.  Tz=-1 → 0 β-Decays of 54Ni, 50Fe, 46Cr, and 42Ti and Comparison With Mirror (3He,t) Measurements , 2015 .