Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers

Abstract The phase transition of Nb from body-centered cubic (bcc) to face-centered cubic (fcc) has been found in Cu/Nb nanostructured multilayers with modulation period (λ) spanning from 5 to 300 nm, and was analyzed by using a thermodynamic model. As λ decreases, the strength of multilayers increase and approach saturation of ∼2.88 GPa at a few nm layer thickness. Size dependent strengthening in present fcc/fcc Cu/Nb multilayers is explained in terms of dislocation based strengthening mechanisms. The enhanced modulus of fcc/fcc Cu/Nb is also observed.

[1]  J. Embury,et al.  On dislocation storage and the mechanical response of fine scale microstructures , 1994 .

[2]  A. F. Guillermet,et al.  Theory of bonding in transition-metal carbides and nitrides. , 1993, Physical review. B, Condensed matter.

[3]  W. Nix,et al.  A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers , 2003 .

[4]  S. Radelaar,et al.  On the kinetics of structural relaxation in metallic glasses , 1983 .

[5]  Gang Liu,et al.  Scaling of the ductility with yield strength in nanostructured Cu/Cr multilayer films , 2010 .

[6]  S. K. Pabi,et al.  Polymorphic bcc to fcc transformation of nanocrystalline niobium studied by positron annihilation , 2001 .

[7]  Andrew Zangwill,et al.  Structural transitions in epitaxial overlayers , 1986 .

[8]  H. Fraser,et al.  Phase stability of bcc Zr in Nb/Zr thin film multilayers , 2003 .

[9]  Bauer,et al.  hcp and bcc Cu and Pd Films. , 1996, Physical review letters.

[10]  M. Demkowicz,et al.  Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. , 2008, Physical review letters.

[11]  William D. Nix,et al.  Effects of the substrate on the determination of thin film mechanical properties by nanoindentation , 2002 .

[12]  Evan Ma,et al.  A maximum in ductility and fracture toughness in nanostructured Cu/Cr multilayer films , 2010 .

[13]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[14]  M. Sasaki,et al.  F.c.c. niobium films grown by halide chemical vapour deposition on ultrasound-vibrating substrates , 1988 .

[15]  Fraser,et al.  Dimensionally induced structural transformations in titanium-aluminum multilayers. , 1996, Physical review letters.

[16]  A. Misra,et al.  Deformation Behavior of Nanostructured Metallic Multilayers , 2001 .

[17]  Amit Misra,et al.  Tensile behavior of 40 nm Cu/Nb nanoscale multilayers , 2008 .

[18]  Xuan Zhang,et al.  Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars , 2012 .

[19]  T. Foecke,et al.  Deformation and fracture in microlaminates , 1996 .

[20]  Guang-Ping Zhang,et al.  On interface strengthening ability in metallic multilayers , 2007 .

[21]  R. Ranjan,et al.  Thickness-dependent fcc–hcp phase transformation in polycrystalline titanium thin films , 2011 .

[22]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[23]  J. Koehler Attempt to Design a Strong Solid , 1970 .

[24]  P. Anderson,et al.  Hall-Petch relations for multilayered materials , 1995 .

[25]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[26]  Nan Li,et al.  Mechanical properties of sputtered Cu/V and Al/Nb multilayer films , 2008 .

[27]  Wei Liu,et al.  Bi-phase transition diagrams of metallic thin multilayers , 2005 .

[28]  D. Josell,et al.  The formation of f.c.c. titanium in titanium-aluminum multilayers , 1996 .

[29]  Ronald E. Miller,et al.  Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings , 2006 .

[30]  Gang Liu,et al.  Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films , 2011 .

[31]  Jun Sun,et al.  Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase , 2011 .

[32]  Redfield,et al.  Stacking sequences in close-packed metallic superlattices. , 1986, Physical review. B, Condensed matter.

[33]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[34]  László Péter,et al.  Electrodeposited multilayer films with giant magnetoresistance (GMR): Progress and problems , 2010 .

[35]  Amit Misra,et al.  Microstructures and strength of nanoscale Cu-Ag multilayers , 2002 .

[36]  Mingjie Yang,et al.  Observation of largely enhanced hardness in nanomultilayers of the Ag–Nb system with positive enthalpy of formation , 2007 .

[37]  F. Zeng,et al.  Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers , 2007 .

[38]  Haiyan Wang,et al.  Mechanical properties of highly textured Cu/Ni multilayers , 2011 .

[39]  Rajarshi Banerjee,et al.  Phase stability in Al/Ti multilayers , 1999 .

[40]  Rajarshi Banerjee,et al.  Polymorphic phase stability in thin multilayers , 1998 .

[41]  S. K. Pabi,et al.  An allotropic transformation induced by mechanical alloying , 1999 .