Sol–gel preparation of selected lanthanide aluminium garnets

A sol–gel method based on in-situ generation of mixed-metal chelates by complexing metal ions with ethane-1,2-diol in an aqueous media has been elaborated to prepare lanthanide-ion containing garnets, Ce3Al5O12 (CAG), Pr3Al5O12 (PAG), Nd3Al5O12 (NAG), Tb3Al5O12 (TAG), Dy3Al5O12 (DAG) and Er3Al5O12 (EAG). The X-ray diffraction patterns of the powders sintered at 1,000 °C showed the formation of monophasic TAG, DAG and EAG. However, the formation of CAG, NAG and PAG under the same experimental conditions did not take place. The phase composition of the samples was also characterized by IR spectroscopy. Microstructural features of the polycrystalline samples were studied by scanning electron microscopy.

[1]  V. Buscaglia,et al.  Disorder and Nonstoichiometry in Synthetic Garnets A3B5O12 (A = Y, Lu−La, B = Al, Fe, Ga). A Simulation Study , 2004 .

[2]  C. O'connor,et al.  Recent advances in the liquid-phase syntheses of inorganic nanoparticles. , 2004, Chemical reviews.

[3]  Mingmei Wu,et al.  Tailored photoluminescence of YAG:Ce phosphor through various methods , 2004 .

[4]  K. Papagelis,et al.  Infrared spectroscopy and lattice dynamical calculations of Gd3Al5O12, Tb3Al5O12 and Lu3Al5O12 single crystals , 2003 .

[5]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[6]  S. Enzo,et al.  Co-precipitation synthesis of neodymium-doped yttrium aluminium oxides nanopowders: quantitative phase investigation as a function of joint isothermal treatment conditions and neodymium content. , 2007 .

[7]  S. Mathur,et al.  Evidence of the formation of mixed-metal garnets via sol–gel synthesis , 2003 .

[8]  Q. Su,et al.  TAG:Ce3+ Phosphors Prepared by a Novel Sol-combustion Method for Application in InGaN-based White LEDs , 2007 .

[9]  T. Inui,et al.  Glycothermal synthesis of rare earth aluminium garnets , 1995 .

[10]  Wieslaw Strek,et al.  Synthesis and optical properties of Nd3+-doped Y3Al5O12 nanoceramics , 2002 .

[11]  Arun Kumar,et al.  Preparation and characterization of nanocrystalline Nd-YAG powder , 2007 .

[12]  T. Jüstel,et al.  CHARACTERIZATION OF CERIUM-DOPED YTTRIUM ALUMINIUM GARNET NANOPOWDERS SYNTHESIZED VIA SOL-GEL PROCESS , 2008 .

[13]  S. Šakirzanovas,et al.  Synthesis and Structure of Europium Aluminium Garnet (EAG) , 2007 .

[14]  A. Katelnikovas,et al.  Low-temperature synthesis of lutetium gallium garnet (LGG) using sol–gel technique , 2008 .

[15]  Mikael Lindgren,et al.  Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol–gel technique , 2010 .

[16]  K. Papagelis,et al.  Infrared lattice spectra of Tm3Al5O12 and Yb3Al5O12 single crystals , 2002 .

[17]  S. Mathur,et al.  Low-temperature synthesis and characterization of yttrium–gallium garnet Y3Ga5O12 (YGG) , 2005 .

[18]  L. Lipińska,et al.  Nanopowders and crystals in (Y1−xNdx)3Al5O12 system: Preparation and properties , 2007 .

[19]  Y. Iida,et al.  In situ Raman monitoring of low-temperature synthesis of YAG from different starting materials , 1999 .

[20]  Y. Fujimoto,et al.  Pre-evaluation method for the spectroscopic properties of YAG bulk materials by sol–gel synthetic YAG powder , 2009 .

[21]  Aibing Yu,et al.  Luminescent properties of YAG:Ce3+ phosphor powders prepared by hydrothermal-homogeneous precipitation method , 2009 .

[22]  M. A. Gülgün,et al.  Effects of Yttrium Doping α‐Alumina: I, Microstructure and Microchemistry , 1999 .

[23]  F. Ivanauskas,et al.  Aqueous sol-gel synthesis route for the preparation of YAG: Evaluation of sol-gel process by mathematical regression model , 2007 .

[24]  J. Mackenzie,et al.  Chemical routes in the synthesis of nanomaterials using the sol-gel process. , 2007, Accounts of chemical research.

[25]  J. Pinkas,et al.  Synthesis and evolution of crystalline garnet phases in Y3Sc5– x Ga x O12 , 2005 .

[26]  G. Chadeyron,et al.  Influence of a chelating agent on optical and morphological properties of YAG: Tb3+ phosphors prepared by the sol-gel process , 2006 .

[27]  Chunhua Yan,et al.  Sol–gel synthesis of nanosized Y3Sc2.5Ga2.5O12 garnet , 2008 .

[28]  Daniel Vivien,et al.  Spectroscopic properties of Yb-doped scandium based compounds Yb:CaSc2O4, Yb:SrSc2O4 and Yb:Sc2SiO5 , 2003 .

[29]  D. Massiot,et al.  71Ga Chemical Shielding and Quadrupole Coupling Tensors of the Garnet Y(3)Ga(5)O(12) from Single-Crystal (71)Ga NMR. , 1997, Inorganic chemistry.

[30]  R. Gajić,et al.  The growth of Nd: YAG single crystals , 2002 .

[31]  N. Khimich,et al.  Synthesis of nanopowders of yttrium aluminum garnet doped by cerium(III) , 2009 .

[32]  H. Yagi,et al.  Optical properties and highly efficient laser oscillation of Nd:YAG ceramics , 2000, CLEO 2000.

[33]  M. López-Quintela,et al.  Synthesis of yttrium aluminium garnet by the citrate gel process , 1998 .

[34]  J. Pinkas,et al.  Syntheses and Characterisation of Gd3Al5O12 and La3Al5O12 Garnets , 2007 .

[35]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[36]  H. Yang,et al.  Synthesis, Crystal Growth, and Photoluminescence Properties of YAG:Eu3+ Phosphors by High-Energy Ball Milling and Solid-State Reaction , 2010 .

[37]  Bernard Chambaz,et al.  Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media , 1999 .

[38]  Chung-Hsin Lu,et al.  Sol–gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders , 2002 .