Bacterial abl-like genes: production of the archaeal osmolyte $$ {N^{\varepsilon }}{\text{ - acetyl - }}\beta {\text{ - lysine}} $$ by homologous overexpression of the yodP–kamA genes in Bacillus subtilis

[1]  X. Triadó-Margarit,et al.  Osmoadaptative accumulation of Nɛ-acetyl-β-lysine in green sulfur bacteria and Bacillus cereus CECT 148T. , 2011, FEMS microbiology letters.

[2]  E. Bremer,et al.  T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. , 2011, Microbiology.

[3]  M. Salvador,et al.  Ectoines in cell stress protection: uses and biotechnological production. , 2010, Biotechnology advances.

[4]  E. Bremer,et al.  The BCCT family of carriers: from physiology to crystal structure , 2010, Molecular microbiology.

[5]  D. Stuckey,et al.  Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs). , 2010, Environmental science & technology.

[6]  Michael Hecker,et al.  A Comprehensive Proteomics and Transcriptomics Analysis of Bacillus subtilis Salt Stress Adaptation , 2009, Journal of bacteriology.

[7]  Helena Santos,et al.  A novel limb in the osmoregulatory network of Methanosarcina mazei Gö1: Nε‐acetyl‐β‐lysine can be substituted by glutamate and alanine , 2009 .

[8]  Volker Müller,et al.  The molecular basis of salt adaptation in Methanosarcina mazei Gö1 , 2008, Archives of Microbiology.

[9]  M. Burg,et al.  Intracellular Organic Osmolytes: Function and Regulation* , 2008, Journal of Biological Chemistry.

[10]  Volker Müller,et al.  Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling. , 2007, FEMS microbiology letters.

[11]  D. Oesterhelt,et al.  Biochemical and Molecular Characterization of the Biosynthesis of Glutamine and Glutamate, Two Major Compatible Solutes in the Moderately Halophilic Bacterium Halobacillus halophilus , 2006, Journal of bacteriology.

[12]  G. Rose,et al.  A molecular mechanism for osmolyte-induced protein stability , 2006, Proceedings of the National Academy of Sciences.

[13]  G. Lentzen,et al.  Extremolytes: natural compounds from extremophiles for versatile applications , 2006, Applied Microbiology and Biotechnology.

[14]  U. Völker,et al.  Genome-wide analysis of temporally regulated and compartment-specific gene expression in sporulating cells of Bacillus subtilis. , 2005, Microbiology.

[15]  M. Gustin,et al.  MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. , 2004, American journal of physiology. Renal physiology.

[16]  H. Saito,et al.  Regulation of the osmoregulatory HOG MAPK cascade in yeast. , 2004, Journal of biochemistry.

[17]  W. Grant Life at low water activity. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  U. Völker,et al.  Genome-Wide Transcriptional Profiling Analysis of Adaptation of Bacillus subtilis to High Salinity , 2003, Journal of bacteriology.

[19]  J. Errington Regulation of endospore formation in Bacillus subtilis , 2003, Nature Reviews Microbiology.

[20]  G. Gottschalk,et al.  Lysine-2,3-Aminomutase and β-Lysine Acetyltransferase Genes of Methanogenic Archaea Are Salt Induced and Are Essential for the Biosynthesis of Nε-Acetyl-β-Lysine and Growth at High Salinity , 2003, Applied and Environmental Microbiology.

[21]  S. Hohmann Osmotic Stress Signaling and Osmoadaptation in Yeasts , 2002, Microbiology and Molecular Biology Reviews.

[22]  Hideko Urushihara,et al.  PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. , 2002, Nucleic acids research.

[23]  V. Müller,et al.  Osmoadaptation in bacteria and archaea: common principles and differences. , 2001, Environmental microbiology.

[24]  R. Losick,et al.  The transcriptional profile of early to middle sporulation in Bacillus subtilis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Frey,et al.  A novel lysine 2,3-aminomutase encoded by the yodO gene of bacillus subtilis: characterization and the observation of organic radical intermediates. , 2000, The Biochemical journal.

[26]  M. Roberts,et al.  Osmoadaptation in Archaea , 1999, Applied and Environmental Microbiology.

[27]  J. M. Wood Osmosensing by Bacteria: Signals and Membrane-Based Sensors , 1999, Microbiology and Molecular Biology Reviews.

[28]  E. Bremer,et al.  Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments , 1998, Archives of Microbiology.

[29]  B. Poolman,et al.  Regulation of compatible solute accumulation in bacteria , 1998, Molecular microbiology.

[30]  M. Débarbouillé,et al.  Role of the transcriptional activator RocR in the arginine‐degradation pathway of Bacillus subtilis , 1997, Molecular microbiology.

[31]  P. Stragier,et al.  Antibiotic-resistance cassettes for Bacillus subtilis. , 1995, Gene.

[32]  R. Gunsalus,et al.  Halotolerance in Methanosarcina spp.: Role of N(sup(epsilon))-Acetyl-(beta)-Lysine, (alpha)-Glutamate, Glycine Betaine, and K(sup+) as Compatible Solutes for Osmotic Adaptation , 1995, Applied and environmental microbiology.

[33]  H. G. Trüper,et al.  Microbial behaviour in salt‐stressed ecosystems , 1994 .

[34]  R. Gunsalus,et al.  Biosynthetic pathways of the osmolytes N epsilon-acetyl-beta-lysine, beta-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses , 1992, Journal of bacteriology.

[35]  D. E. Robertson,et al.  Free amino acid dynamics in marine methanogens. beta-Amino acids as compatible solutes. , 1992, The Journal of biological chemistry.

[36]  D. E. Robertson,et al.  Distribution of compatible solutes in the halophilic methanogenic archaebacteria , 1991, Journal of bacteriology.

[37]  J A Chudek,et al.  The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. , 1990, Journal of general microbiology.

[38]  D. E. Robertson,et al.  N epsilon-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[39]  L N Csonka,et al.  Physiological and genetic responses of bacteria to osmotic stress. , 1989, Microbiological reviews.

[40]  A. Dandekar,et al.  Molecular Biology of Osmoregulation , 1984, Science.

[41]  H. A. Barker,et al.  Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. , 1970, The Journal of biological chemistry.

[42]  M. Hagemann Molecular biology of cyanobacterial salt acclimation. , 2011, FEMS microbiology reviews.

[43]  H. Santos,et al.  8 Characterization and Quantification of Compatible Solutes in (Hyper)thermophilic Microorganisms , 2006 .

[44]  V. Müller,et al.  "Osmoadaptation in Methanogenic Archaea: Recent Insights from a Genomic Perspective" , 2005 .

[45]  M. Roberts Organic compatible solutes of halotolerant and halophilic microorganisms. , 2005, Saline systems.

[46]  E. Bremer Adaptation to Changing Osmolanty , 2002 .

[47]  F. Dyda,et al.  GCN5-related N-acetyltransferases: a structural overview. , 2000, Annual review of biophysics and biomolecular structure.

[48]  C. Harwood,et al.  Molecular biological methods for Bacillus , 1990 .