Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor : algorithm theoretical basis

The TROPOspheric Monitoring Instrument (TROPOMI) onboard the Copernicus Sentinel-5 Precursor (S-5P) platform will measure ultraviolet earthshine radiances at high spectral and improved spatial resolution (pixel size of 7 km× 3.5 km at nadir) compared to its predecessors OMI and GOME-2. This paper presents the sulfur dioxide (SO2) vertical column retrieval algorithm implemented in the S-5P operational processor UPAS (Universal Processor for UV/VIS Atmospheric Spectrometers) and comprehensively describes its various retrieval steps. The spectral fitting is performed using the differential optical absorption spectroscopy (DOAS) method including multiple fitting windows to cope with the large range of atmospheric SO2 columns encountered. It is followed by a slant column background correction scheme to reduce possible biases or across-track-dependent artifacts in the data. The SO2 vertical columns are obtained by applying air mass factors (AMFs) calculated for a set of representative a priori profiles and accounting for various parameters influencing the retrieval sensitivity to SO2. Finally, the algorithm includes an error analysis module which is fully described here. We also discuss verification results (as part of the algorithm development) and future validation needs of the TROPOMI SO2 algorithm.

[1]  Quintus Kleipool,et al.  Earth surface reflectance climatology from 3 years of OMI data , 2008 .

[2]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[3]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[4]  Christoph Kern,et al.  Radiative transfer corrections for accurate spectroscopic measurements of volcanic gas emissions , 2010 .

[5]  Arlin J. Krueger,et al.  Validation of ozone monitoring instrument SO2 measurements in the Okmok volcanic cloud over Pullman, WA, July 2008 , 2010 .

[6]  Nicolas Theys,et al.  Sulfur dioxide vertical column DOAS retrievals from the Ozone Monitoring Instrument: Global observations and comparison to ground‐based and satellite data , 2015 .

[7]  Christos Zerefos,et al.  On the Retrieval of Volcanic Sulfur Dioxide Emissions from GOME Backscatter Measurements , 2005 .

[8]  Henk Eskes,et al.  Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors , 2008 .

[9]  S. Carn,et al.  A global catalogue of large SO 2 sources and emissions derived from theOzone Monitoring Instrument , 2016 .

[10]  S. Beirle,et al.  Estimating the volcanic emission rate and atmospheric lifetime of SO 2 from space: a case study for Kīlauea volcano, Hawai`i , 2013 .

[11]  Ulrich Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[12]  Johannes Orphal,et al.  Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region , 2003 .

[13]  Ann Carine Vandaele,et al.  Fourier transform measurements of SO 2 absorption cross sections: II. , 2009 .

[14]  B. Dix,et al.  Observations of the 2008 Kasatochi volcanic SO 2 plume by CARIBIC aircraft DOAS and the GOME-2 satellite , 2010 .

[15]  J. Brion,et al.  Absorption Spectra Measurements for the Ozone Molecule in the 350–830 nm Region , 1998 .

[16]  John P. Burrows,et al.  RING EFFECT: IMPACT OF ROTATIONAL RAMAN SCATTERING ON RADIATIVE TRANSFER IN EARTH’S ATMOSPHERE , 1998 .

[17]  A. Richter,et al.  Quantifying volcanic SO2 emissions using GOME-2 measurements , 2009 .

[18]  Kelly Chance,et al.  An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared , 2010 .

[19]  Nicolas Theys,et al.  Cleaning up the air: effectiveness of air quality policy for SO 2 and NO x emissions in China , 2016 .

[20]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[21]  Arve Kylling,et al.  Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations , 2005 .

[22]  A. Krueger,et al.  Sighting of El Chich�n Sulfur Dioxide Clouds with the Nimbus 7 Total Ozone Mapping Spectrometer , 1983, Science.

[23]  J. Burrows,et al.  Tropospheric sulfur dioxide observed by the ERS‐2 GOME instrument , 1998 .

[24]  Xiong Liu,et al.  Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: Theory and application , 2010 .

[25]  Xiong Liu,et al.  Retrievals of sulfur dioxide from the Global Ozone Monitoring Experiment 2 (GOME‐2) using an optimal estimation approach: Algorithm and initial validation , 2011 .

[26]  Kai Yang,et al.  First observations of SO2 from the satellite Suomi NPP OMPS: Widespread air pollution events over China , 2013 .

[27]  Can Li,et al.  Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland , 2016 .

[28]  U. Schumann,et al.  Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010 , 2010 .

[29]  C. Clerbaux,et al.  Intercontinental transport of anthropogenic sulfur dioxide and other pollutants: An infrared remote sensing case study , 2011 .

[30]  Meike Rix,et al.  Volcanic SO2, BrO and plume height estimations using GOME‐2 satellite measurements during the eruption of Eyjafjallajökull in May 2010 , 2012 .

[31]  K. Chance,et al.  Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. , 1997, Applied optics.

[32]  Brittany McClure,et al.  Validation of SO2 Retrievals from the Ozone Monitoring Instrument over NE China , 2008 .

[33]  Dominik Brunner,et al.  An improved tropospheric NO 2 retrieval for satellite observations in the vicinity of mountainous terrain , 2009 .

[34]  I. D. Smedt,et al.  Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China , 2016 .

[35]  D. S. Zweers TRAQ Performance Analysis and Requirements Consolidation for the Candidate Earth Explorer Mission TRAQ ( TRopospheric composition and Air Quality ) ESA CONTRACT NO : 21509 / 08 / NL / CT Summary Report , 2010 .

[36]  Nicolas Theys,et al.  Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes , 2013 .

[37]  S. Carn,et al.  Multi-decadal satellite measurements of global volcanic degassing , 2016 .

[38]  J. Brion,et al.  New measurements of the absolute absorption cross-sections of ozone at 294 and 223 K in the 310-350 nm spectral range , 1984 .

[39]  J. V. Gent,et al.  Volcanic SO 2 fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS , 2012 .

[40]  Henk Eskes,et al.  TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications , 2012 .

[41]  Peter Bergamaschi,et al.  The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0 , 2010 .

[42]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[43]  U. Platt,et al.  Extending differential optical absorption spectroscopy for limb measurements in the UV , 2010 .

[44]  D. Gesch,et al.  Global multi-resolution terrain elevation data 2010 (GMTED2010) , 2011 .

[45]  David G. Streets,et al.  Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015 , 2015 .

[46]  S. Beirle,et al.  Systematic investigation of bromine monoxide in volcanic plumes from space by using the GOME-2 instrument , 2012 .

[47]  Kai Yang,et al.  Band residual difference algorithm for retrieval of SO/sub 2/ from the aura ozone monitoring instrument (OMI) , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Christoph Kern,et al.  Novel SO2 spectral evaluation scheme using the 360-390 nm wavelength range , 2010 .

[49]  Simon A. Carn,et al.  Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud , 2011 .

[50]  Initial validation of GOME-2 GDP 4.2 NO2 columns , 2011 .

[51]  Steffen Beirle,et al.  MAX-DOAS measurements and satellite validation of tropospheric NO2 and SO2 vertical column densities at a rural site of North China , 2016 .

[52]  Andreas Hilboll,et al.  An improved NO 2 retrieval for the GOME-2 satellite instrument , 2011 .

[53]  Christoph Kern,et al.  Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description , 2010 .

[54]  Arlin J. Krueger,et al.  Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations , 2007 .

[55]  Nickolay A. Krotkov,et al.  Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis , 2009 .

[56]  R. Spurr LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems , 2008 .

[57]  Steffen Beirle,et al.  Satellite observations of atmospheric SO2 from volcanic eruptions during the time-period of 1996–2002 , 2004 .

[58]  John P. Burrows,et al.  BrO emission from volcanoes: A survey using GOME and SCIAMACHY measurements , 2004 .

[59]  Henk Eskes,et al.  Averaging kernels for DOAS total-column satellite retrievals , 2003 .

[60]  Discrete-ordinate radiative transfer in a stratified medium with first-order rotational Raman scattering , 2008 .

[61]  Ann Carine Vandaele,et al.  Fourier transform measurements of SO2 absorption cross sections: II.: Temperature dependence in the 29 000–44 000 cm−1 (227–345 nm) region , 2009 .

[62]  Yugo Kanaya,et al.  Comparison of box-air-mass-factors and radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer models , 2006, Atmospheric Chemistry and Physics.

[63]  R. Martin,et al.  Space-based detection of missing sulfur dioxide sources of global air pollution , 2016 .

[64]  Can Li,et al.  A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument , 2013 .

[65]  R. Martin,et al.  Application of OMI, SCIAMACHY, and GOME‐2 satellite SO2 retrievals for detection of large emission sources , 2013 .