Zeros of Rankin-Selberg $L$-functions in families

Let Fn be the set of all cuspidal automorphic representations π of GLn with unitary central character over a number field F . We prove the first unconditional zero density estimate for the set S = {L(s, π × π) : π ∈ Fn} of Rankin–Selberg L-functions, where π ∈ Fn′ is fixed. We use this density estimate to prove: (i) a strong average form of effective multiplicity one for GLn; (ii) that given π ∈ Fn defined over Q, the convolution π × π̃ has a positive level of distribution in the sense of Bombieri–Vinogradov; (iii) that almost all L(s, π×π′) ∈ S have a hybrid-aspect subconvexity bound on Re(s) = 1 2 ; (iv) a hybrid-aspect power-saving upper bound for the variance in the discrepancy of the measures |φ(x+ iy)|2y−2dxdy associated to GL2 Hecke–Maaß newforms φ with trivial nebentypus, extending work of Luo and Sarnak for level 1 cusp forms; and (v) a nonsplit analogue of quantum ergodicity: almost all restrictions of Hilbert Hecke– Maaß newforms to the modular surface dissipate as their Laplace eigenvalues grow.

[1]  Y. Ye,et al.  Hypothesis H and the prime number theorem for automorphic representations , 2007 .

[2]  Akshay Venkatesh,et al.  The subconvexity problem for GL2 , 2009, 0903.3591.

[3]  V. Blomer,et al.  On the Ramanujan conjecture over number fields , 2010, 1003.0559.

[4]  Density theorems for GL(n) , 2019, 1906.07459.

[5]  Kathleen L. Petersen,et al.  A Bombieri-Vinogradov theorem for all number fields , 2012 .

[6]  J. Shalika,et al.  ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS 1 , 1981 .

[7]  Correction: "Modularity of the Rankin-Selberg $L$-series, and multiplicity one for SL(2)" , 2000, math/0007203.

[8]  M. Krishnamurthy The Asai transfer to GL4 via the Langlands-Shahidi method , 2003 .

[9]  K. Soundararajan,et al.  Weak subconvexity without a Ramanujan hypothesis , 2018, Duke Mathematical Journal.

[10]  G. Molteni Upper and lower bounds at s = 1 for certain Dirichlet series with Euler product , 2002 .

[11]  Thomas C. Watson Rankin Triple Products and Quantum Chaos , 2008, 0810.0425.

[12]  Jean-Pierre Serre The Large Sieve , 1997 .

[13]  P. Gallagher,et al.  A large sieve density estimate near σ=1 , 1970 .

[14]  Peter Sarnak,et al.  The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .

[15]  Djordje Mili'cevi'c,et al.  Counting cusp forms by analytic conductor , 2018, 1805.00633.

[16]  Avraham Aizenbud,et al.  Multiplicity one Theorems , 2007, 0709.4215.

[17]  Rizwanur Khan,et al.  On the fourth moment of Hecke–Maass forms and the random wave conjecture , 2016, Compositio Mathematica.

[18]  R. Carter Lie Groups , 1970, Nature.

[19]  D. Goldfeld A Simple Proof of Siegel's Theorem. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Henniart,et al.  An Upper Bound on Conductors for Pairs , 1997 .

[21]  H. Iwaniec,et al.  Analytic Number Theory , 2004 .

[22]  T. Asai On certain Dirichlet series associated with Hilbert modular forms and Rankin's method , 1977 .

[23]  P. Gallagher Bombieri's mean value theorem , 1968 .

[24]  Asif Zaman,et al.  Zeros of Rankin–Selberg $L$-functions at the edge of the critical strip , 2018, Journal of the European Mathematical Society.

[25]  Spectral Multiplicity for Maaß Newforms of Non-Squarefree Level , 2015, 1502.06885.

[26]  S. Gelbart,et al.  A relation between automorphic representations of GL(2) and GL(3) , 2003 .

[27]  G. Francca,et al.  On the zeros of L-functions , 2013, 1309.7019.

[28]  Peter Sarnak,et al.  Perspectives on the Analytic Theory of L-Functions , 2000 .

[29]  Robert P. Langlands,et al.  BASE CHANGE FOR GL(2) , 1980 .

[30]  W. Banks Twisted symmetric-square $L$-functions and the nonexistence of Siegel zeros on $GL(3)$ , 1997 .

[31]  A. Weiss The least prime ideal. , 1983 .

[32]  J. Hoffstein,et al.  Siegel zeros and cusp forms , 1995 .

[33]  Peter Humphries,et al.  Standard zero-free regions for Rankin–Selberg L-functions via sieve theory , 2017, Mathematische Zeitschrift.

[34]  Paul D. Nelson Equidistribution Of Cusp Forms In The Level Aspect , 2010, 1011.1292.

[35]  Jianya Liu,et al.  A theorem on analytic strong multiplicity one , 2008, 0812.1969.

[36]  Steve Zelditch,et al.  Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .

[37]  J. Waldspurger Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie , 1985 .

[38]  K. Soundararajan,et al.  Quantum unique ergodicity for SL_2(Z)\H , 2009, 0901.4060.

[39]  Wang Wei On the least prime in an arithmetic progression , 1991 .

[40]  Xiannan Li Upper bounds on L-functions at the edge of the critical strip , 2009, 0904.0850.

[41]  Henry H. Kim,et al.  FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2 , 2003 .

[42]  M. Young The quantum unique ergodicity conjecture for thin sets , 2013, 1306.1554.

[43]  Paul D. Nelson,et al.  Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels , 2012, 1205.5534.

[44]  Erez Lapid On the Harish-Chandra Schwartz space of G(F)\G(A) , 2012 .

[45]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[46]  Farrell Brumley Effective multiplicity one on GLn and narrow zero-free regions for Rankin-Selberg L-functions , 2006 .

[47]  E. Lindenstrauss Invariant measures and arithmetic quantum unique ergodicity , 2006 .

[48]  Paul D. Nelson Quadratic Hecke Sums and Mass Equidistribution , 2020, 2001.08704.

[49]  S. Graham,et al.  Lower Bounds for Least Quadratic Non-Residues , 1990 .

[50]  Jeffrey Hoffstein And Paul Lockhart Coefficients of Maass Forms and the Siegel Zero , 2021 .

[51]  Henryk Iwaniec,et al.  Kloosterman sums and Fourier coefficients of cusp forms , 1982 .

[52]  W. Duke,et al.  A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations , 2000 .

[53]  S. Zelditch Selberg trace formulae and equidistribution theorems for closed geodesics and Laplace eigenfunctions: finite area surfaces , 1992 .

[54]  P. Sarnak,et al.  Families of L -Functions and Their Symmetry , 2014, 1401.5507.

[55]  PENG-JIE Wong BOMBIERI–VINOGRADOV THEOREMS FOR MODULAR FORMS AND APPLICATIONS , 2019 .

[56]  V. Blomer Period Integrals and Rankin–Selberg L-functions on GL(n) , 2012, Geometric and Functional Analysis.

[57]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[58]  M. Krishnamurthy Determination of cusp forms on GL(2) by coefficients restricted to quadratic subfields (with an appendix by Dipendra Prasad and Dinakar Ramakrishnan) , 2012 .

[59]  B. Speh ABSOLUTE CONVERGENCE OF THE SPECTRAL SIDE OF THE ARTHUR TRACE FORMULA FOR GLn , 2004 .

[60]  P. Sarnak,et al.  On Selberg's eigenvalue conjecture , 1995 .

[61]  Hervé Jacquet,et al.  Rankin-Selberg Convolutions , 1983 .

[62]  Y. C. Verdière,et al.  Ergodicité et fonctions propres du laplacien , 1985 .

[63]  Carlos J. Moreno ANALYTIC PROOF OF THE STRONG MULTIPLICITY ONE THEOREM , 1985 .

[64]  Roger Godement,et al.  Zeta Functions of Simple Algebras , 1972 .

[65]  三河 寛,et al.  A variant of the Bombieri-Vinogradov theorem (解析的整数論とその周辺 研究集会報告集) , 2006 .

[66]  Quantum ergodicity of Eigenfunctions on PSL2(Z)/H2 , 1995 .

[67]  H. Iwaniec Spectral methods of automorphic forms , 2002 .