Zeros of Rankin-Selberg $L$-functions in families
暂无分享,去创建一个
[1] Y. Ye,et al. Hypothesis H and the prime number theorem for automorphic representations , 2007 .
[2] Akshay Venkatesh,et al. The subconvexity problem for GL2 , 2009, 0903.3591.
[3] V. Blomer,et al. On the Ramanujan conjecture over number fields , 2010, 1003.0559.
[4] Density theorems for GL(n) , 2019, 1906.07459.
[5] Kathleen L. Petersen,et al. A Bombieri-Vinogradov theorem for all number fields , 2012 .
[6] J. Shalika,et al. ON EULER PRODUCTS AND THE CLASSIFICATION OF AUTOMORPHIC REPRESENTATIONS 1 , 1981 .
[7] Correction: "Modularity of the Rankin-Selberg $L$-series, and multiplicity one for SL(2)" , 2000, math/0007203.
[8] M. Krishnamurthy. The Asai transfer to GL4 via the Langlands-Shahidi method , 2003 .
[9] K. Soundararajan,et al. Weak subconvexity without a Ramanujan hypothesis , 2018, Duke Mathematical Journal.
[10] G. Molteni. Upper and lower bounds at s = 1 for certain Dirichlet series with Euler product , 2002 .
[11] Thomas C. Watson. Rankin Triple Products and Quantum Chaos , 2008, 0810.0425.
[12] Jean-Pierre Serre. The Large Sieve , 1997 .
[13] P. Gallagher,et al. A large sieve density estimate near σ=1 , 1970 .
[14] Peter Sarnak,et al. The behaviour of eigenstates of arithmetic hyperbolic manifolds , 1994 .
[15] Djordje Mili'cevi'c,et al. Counting cusp forms by analytic conductor , 2018, 1805.00633.
[16] Avraham Aizenbud,et al. Multiplicity one Theorems , 2007, 0709.4215.
[17] Rizwanur Khan,et al. On the fourth moment of Hecke–Maass forms and the random wave conjecture , 2016, Compositio Mathematica.
[18] R. Carter. Lie Groups , 1970, Nature.
[19] D. Goldfeld. A Simple Proof of Siegel's Theorem. , 1974, Proceedings of the National Academy of Sciences of the United States of America.
[20] G. Henniart,et al. An Upper Bound on Conductors for Pairs , 1997 .
[21] H. Iwaniec,et al. Analytic Number Theory , 2004 .
[22] T. Asai. On certain Dirichlet series associated with Hilbert modular forms and Rankin's method , 1977 .
[23] P. Gallagher. Bombieri's mean value theorem , 1968 .
[24] Asif Zaman,et al. Zeros of Rankin–Selberg $L$-functions at the edge of the critical strip , 2018, Journal of the European Mathematical Society.
[25] Spectral Multiplicity for Maaß Newforms of Non-Squarefree Level , 2015, 1502.06885.
[26] S. Gelbart,et al. A relation between automorphic representations of GL(2) and GL(3) , 2003 .
[27] G. Francca,et al. On the zeros of L-functions , 2013, 1309.7019.
[28] Peter Sarnak,et al. Perspectives on the Analytic Theory of L-Functions , 2000 .
[29] Robert P. Langlands,et al. BASE CHANGE FOR GL(2) , 1980 .
[30] W. Banks. Twisted symmetric-square $L$-functions and the nonexistence of Siegel zeros on $GL(3)$ , 1997 .
[31] A. Weiss. The least prime ideal. , 1983 .
[32] J. Hoffstein,et al. Siegel zeros and cusp forms , 1995 .
[33] Peter Humphries,et al. Standard zero-free regions for Rankin–Selberg L-functions via sieve theory , 2017, Mathematische Zeitschrift.
[34] Paul D. Nelson. Equidistribution Of Cusp Forms In The Level Aspect , 2010, 1011.1292.
[35] Jianya Liu,et al. A theorem on analytic strong multiplicity one , 2008, 0812.1969.
[36] Steve Zelditch,et al. Uniform distribution of eigenfunctions on compact hyperbolic surfaces , 1987 .
[37] J. Waldspurger. Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie , 1985 .
[38] K. Soundararajan,et al. Quantum unique ergodicity for SL_2(Z)\H , 2009, 0901.4060.
[39] Wang Wei. On the least prime in an arithmetic progression , 1991 .
[40] Xiannan Li. Upper bounds on L-functions at the edge of the critical strip , 2009, 0904.0850.
[41] Henry H. Kim,et al. FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4 AND THE SYMMETRIC FOURTH OF GL2 , 2003 .
[42] M. Young. The quantum unique ergodicity conjecture for thin sets , 2013, 1306.1554.
[43] Paul D. Nelson,et al. Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels , 2012, 1205.5534.
[44] Erez Lapid. On the Harish-Chandra Schwartz space of G(F)\G(A) , 2012 .
[45] Joseph Lipka,et al. A Table of Integrals , 2010 .
[46] Farrell Brumley. Effective multiplicity one on GLn and narrow zero-free regions for Rankin-Selberg L-functions , 2006 .
[47] E. Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity , 2006 .
[48] Paul D. Nelson. Quadratic Hecke Sums and Mass Equidistribution , 2020, 2001.08704.
[49] S. Graham,et al. Lower Bounds for Least Quadratic Non-Residues , 1990 .
[50] Jeffrey Hoffstein And Paul Lockhart. Coefficients of Maass Forms and the Siegel Zero , 2021 .
[51] Henryk Iwaniec,et al. Kloosterman sums and Fourier coefficients of cusp forms , 1982 .
[52] W. Duke,et al. A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations , 2000 .
[53] S. Zelditch. Selberg trace formulae and equidistribution theorems for closed geodesics and Laplace eigenfunctions: finite area surfaces , 1992 .
[54] P. Sarnak,et al. Families of L -Functions and Their Symmetry , 2014, 1401.5507.
[55] PENG-JIE Wong. BOMBIERI–VINOGRADOV THEOREMS FOR MODULAR FORMS AND APPLICATIONS , 2019 .
[56] V. Blomer. Period Integrals and Rankin–Selberg L-functions on GL(n) , 2012, Geometric and Functional Analysis.
[57] Kerstin Vogler,et al. Table Of Integrals Series And Products , 2016 .
[58] M. Krishnamurthy. Determination of cusp forms on GL(2) by coefficients restricted to quadratic subfields (with an appendix by Dipendra Prasad and Dinakar Ramakrishnan) , 2012 .
[59] B. Speh. ABSOLUTE CONVERGENCE OF THE SPECTRAL SIDE OF THE ARTHUR TRACE FORMULA FOR GLn , 2004 .
[60] P. Sarnak,et al. On Selberg's eigenvalue conjecture , 1995 .
[61] Hervé Jacquet,et al. Rankin-Selberg Convolutions , 1983 .
[62] Y. C. Verdière,et al. Ergodicité et fonctions propres du laplacien , 1985 .
[63] Carlos J. Moreno. ANALYTIC PROOF OF THE STRONG MULTIPLICITY ONE THEOREM , 1985 .
[64] Roger Godement,et al. Zeta Functions of Simple Algebras , 1972 .
[65] 三河 寛,et al. A variant of the Bombieri-Vinogradov theorem (解析的整数論とその周辺 研究集会報告集) , 2006 .
[66] Quantum ergodicity of Eigenfunctions on PSL2(Z)/H2 , 1995 .
[67] H. Iwaniec. Spectral methods of automorphic forms , 2002 .