Lower bounds for monotone span programs

Span programs provide a linear algebraic model of computation. Lower bounds for span programs imply lower bounds for formula size, symmetric branching programs, and contact schemes. Monotone span programs correspond also to linear secret-sharing schemes. We present a new technique for proving lower bounds for monotone span programs. We prove a lower bound of Ω(m2.5) for the 6-clique function. Our results improve on the previously known bounds for explicit functions.

[1]  Ivan Damgård,et al.  Hashing Functions can Simplify Zero-Knowledge Protocol Design (too) , 1994 .

[2]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[3]  Suresh C. Kothari,et al.  Generalized Linear Threshold Scheme , 1985, CRYPTO.

[4]  Marten van Dijk A Linear Construction of Perfect Secret Sharing Schemes , 1994, EUROCRYPT.

[5]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[6]  L. Aceto CPO Models for GSOS Languages - Part I: Compact GSOS Languages , 1994 .

[7]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[8]  Christoph Meinel,et al.  Structure and importance of logspace-MOD class , 1992, Mathematical systems theory.

[9]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[10]  Ingo Wegener,et al.  The Complexity of Symmetric Boolean Functions , 1987, Computation Theory and Logic.

[11]  Ivan Damgård,et al.  Enhancing the Strength of Conventional Cryptosystems , 1994 .

[12]  Kim G. Larsen,et al.  Automatic Synthesis of Real Time Systems , 1994, ICALP.

[13]  Alexander A. Razborov,et al.  On the method of approximations , 1989, STOC '89.

[14]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[15]  J BerkowitzStuart On computing the determinant in small parallel time using a small number of processors , 1984 .

[16]  Lajos Rónyai,et al.  Extremal bipartite graphs and superpolynomial lower bounds for monotone span programs , 1996, STOC '96.

[17]  A. Wigderson The Fusion Method for Lower Bounds in Circuit Complexity , 2003 .

[18]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[19]  Alfredo De Santis,et al.  On the size of shares for secret sharing schemes , 1991, Journal of Cryptology.

[20]  Alexander A. Razborov,et al.  On provably disjoint NP-pairs , 1994, Electron. Colloquium Comput. Complex..

[21]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[22]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[23]  Keith M. Martin,et al.  Ideal secret sharing schemes with multiple secrets , 1996, Journal of Cryptology.

[24]  Gustavus J. Simmons,et al.  How to (Really) Share a Secret , 1988, CRYPTO.

[25]  László Csirmaz The Size of a Share Must Be Large , 1994, EUROCRYPT.

[26]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[27]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[28]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[29]  Nicholas Pippenger,et al.  On Another Boolean Matrix , 1980, Theor. Comput. Sci..

[30]  Marten van Dijk On the information rate of perfect secret sharing schemes , 1995, Des. Codes Cryptogr..

[31]  Amos Beimel Lower Bounds for Monotone Span Programs , 1994 .

[32]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[33]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[34]  Keith M. Martin,et al.  Geometric secret sharing schemes and their duals , 1994, Des. Codes Cryptogr..

[35]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[36]  Ingemar Ingemarsson,et al.  A Construction of Practical Secret Sharing Schemes using Linear Block Codes , 1992, AUSCRYPT.

[37]  Sten Agerholm,et al.  A HOL Basis for Reasoning about Functional Programs , 1994 .

[38]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[39]  Mauricio Karchmer,et al.  On proving lower bounds for circuit size , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[40]  Dany Breslauer,et al.  Efficient String Matching on Coded Texts , 1994, CPM.

[41]  Alfredo De Santis,et al.  On the Information Rate of Secret Sharing Schemes , 1996, Theor. Comput. Sci..

[42]  Luca Aceto,et al.  A Complete Axiomatization of Timed Bisimulation for a Class of Timed Regular Behaviours (Revised Version) , 1994 .