A method to generate recombinant Salmonella typhi Ty21a strains expressing multiple heterologous genes using an improved recombineering strategy

[1]  F. Fang,et al.  Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein , 2010, Archives of Virology.

[2]  S. Pongcharoen,et al.  Comparison of neuraminidase activity of influenza A virus subtype H5N1 and H1N1 using reverse genetics virus. , 2010, The Southeast Asian journal of tropical medicine and public health.

[3]  A. Danchin,et al.  Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli , 2009, BMC Genomics.

[4]  D. Kopecko,et al.  Genetic stability of vaccine strain Salmonella Typhi Ty21a over 25 years. , 2009, International journal of medical microbiology : IJMM.

[5]  H. Skovierová,et al.  Salmonella enterica Serovar Typhimurium HtrA: regulation of expression and role of the chaperone and protease activities during infection. , 2009, Microbiology.

[6]  W. Goebel,et al.  Improvement of the live vaccine strain Salmonella enterica serovar Typhi Ty21a for antigen delivery via the hemolysin secretion system of Escherichia coli. , 2009, International journal of medical microbiology : IJMM.

[7]  M. Hensel,et al.  Construction of highly attenuated Salmonella enterica serovar Typhimurium live vectors for delivering heterologous antigens by chromosomal integration. , 2008, Microbiological research.

[8]  Wei Kong,et al.  Regulated programmed lysis of recombinant Salmonella in host tissues to release protective antigens and confer biological containment , 2008, Proceedings of the National Academy of Sciences.

[9]  Wei Shi,et al.  Comparative Efficacy of Neutralizing Antibodies Elicited by Recombinant Hemagglutinin Proteins from Avian H5N1 Influenza Virus , 2008, Journal of Virology.

[10]  J. Karlinsey,et al.  λ‐Red Genetic Engineering in Salmonella enterica serovar Typhimurium , 2007 .

[11]  J. Karlinsey,et al.  lambda-Red genetic engineering in Salmonella enterica serovar Typhimurium. , 2007, Methods in enzymology.

[12]  N. Costantino,et al.  Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. , 2007, Methods in enzymology.

[13]  N. Costantino,et al.  A set of recombineering plasmids for gram-negative bacteria. , 2006, Gene.

[14]  M. Venkatesan,et al.  Developing live Shigella vaccines using λ Red recombineering , 2006 .

[15]  M. Venkatesan,et al.  Developing live Shigella vaccines using lambda Red recombineering. , 2006, FEMS immunology and medical microbiology.

[16]  M. Hensel,et al.  Evaluation of an intracellular-activated promoter for the generation of live Salmonella recombinant vaccines. , 2005, Vaccine.

[17]  T. Meyer,et al.  Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers. , 2004, Vaccine.

[18]  J. Crump,et al.  The global burden of typhoid fever. , 2004, Bulletin of the World Health Organization.

[19]  B. Stecher,et al.  Type III Secretion of Salmonella enterica Serovar Typhimurium Translocated Effectors and SseFG , 2002, Infection and Immunity.

[20]  T. Meyer,et al.  Safety and immunogenicity of live recombinant Salmonella enterica serovar Typhi Ty21a expressing urease A and B from Helicobacter pylori in human volunteers. , 2001, Vaccine.

[21]  D. Bermudes,et al.  Extragenic Suppressors of Growth Defects inmsbB Salmonella , 2001, Journal of bacteriology.

[22]  M. Levine,et al.  Can a 'flawless' live vector vaccine strain be engineered? , 2001, Trends in microbiology.

[23]  B. Wanner,et al.  One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Hensel,et al.  Salmonella Pathogenicity Island 2 , 2000, Molecular microbiology.

[25]  D. Court,et al.  An efficient recombination system for chromosome engineering in Escherichia coli. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Kenneth E. Rudd,et al.  EcoGene: a genome sequence database for Escherichia coli K-12 , 2000, Nucleic Acids Res..

[27]  S Falkow,et al.  Macrophage‐dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival , 1998, Molecular microbiology.

[28]  P. Angrand,et al.  A simple assay to determine the functionality of Cre or FLP recombination targets in genomic manipulation constructs. , 1996, Nucleic acids research.

[29]  Henry Huang,et al.  Homologous recombination in Escherichia coli: dependence on substrate length and homology. , 1986, Genetics.

[30]  W. Rutter,et al.  Homology requirements for recombination in Escherichia coli. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Germanier,et al.  Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. , 1975, The Journal of infectious diseases.

[32]  A. B. CiusnE,et al.  Typhoid fever. , 1967, The Journal of the Arkansas Medical Society.