Explicit Constructions of Optimal-Access MSCR Codes for All Parameters

The MSCR (minimum storage cooperative regenerating) code is an important variation of regenerating codes for repairing multiple node failures in a cooperative way and retaining the minimum storage. However, explicit constructions of MSCR codes for all parameters were not developed untill Ye&Barg’s recent work. Here we present another explicit construction of MSCR codes for all parameters. Specifically, we design an <inline-formula> <tex-math notation="LaTeX">$({n},{k})$ </tex-math></inline-formula> MDS code that can cooperatively repair any <inline-formula> <tex-math notation="LaTeX">${h}\,\,(2 \leq {h} \leq {n}-{k})$ </tex-math></inline-formula> erasures from any <inline-formula> <tex-math notation="LaTeX">${d}\,\,({k} \leq {d} \leq {n}-{h})$ </tex-math></inline-formula> helper nodes. The superiority of our code to Ye&Barg’s is three fold: (1) Our code additionally has the optimal access property, i.e., the amount of data accessed at each helper node meets a lower bound on this quantity; (2) The sub-packetization level is reduced by a factor of <inline-formula> <tex-math notation="LaTeX">$(d-k)^{(h-1)\binom {n}{h}}$ </tex-math></inline-formula>; (3) Our code is built over a smaller field <inline-formula> <tex-math notation="LaTeX">${F}$ </tex-math></inline-formula> with <inline-formula> <tex-math notation="LaTeX">$|{F}|\geq {n}+{d}-{k}$ </tex-math></inline-formula>, compared to Ye&Barg’s requirement <inline-formula> <tex-math notation="LaTeX">$|{F}|\geq ({d}-{k}+1){n}$ </tex-math></inline-formula>.

[1]  Kenneth W. Shum,et al.  Cooperative Regenerating Codes , 2012, IEEE Transactions on Information Theory.

[2]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[3]  Stefan Savage,et al.  Total Recall: System Support for Automated Availability Management , 2004, NSDI.

[4]  Alexander Barg,et al.  Explicit Constructions of Optimal-Access MDS Codes With Nearly Optimal Sub-Packetization , 2016, IEEE Transactions on Information Theory.

[5]  Pei Li,et al.  Cooperative Recovery of Distributed Storage Systems from Multiple Losses with Network Coding , 2010, IEEE Journal on Selected Areas in Communications.

[6]  Kenneth W. Shum,et al.  Cooperative repair of multiple node failures in distributed storage systems , 2016, Int. J. Inf. Coding Theory.

[7]  Alexander Barg,et al.  Explicit Constructions of High-Rate MDS Array Codes With Optimal Repair Bandwidth , 2016, IEEE Transactions on Information Theory.

[8]  Nicolas Le Scouarnec Exact scalar minimum storage coordinated regenerating codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Arman Fazeli,et al.  Minimum storage regenerating codes for all parameters , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[10]  Balaji Srinivasan Babu,et al.  A Tight Lower Bound on the Sub- Packetization Level of Optimal-Access MSR and MDS Codes , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[11]  Nihar B. Shah,et al.  Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction , 2010, IEEE Transactions on Information Theory.

[12]  Kannan Ramchandran,et al.  Asymptotic Interference Alignment for Optimal Repair of MDS Codes in Distributed Storage , 2013, IEEE Transactions on Information Theory.

[13]  P. Vijay Kumar,et al.  A high-rate MSR code with polynomial sub-packetization level , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[14]  Alexander Barg,et al.  Cooperative Repair: Constructions of Optimal MDS Codes for All Admissible Parameters , 2018, IEEE Transactions on Information Theory.