From Tetris to polyominoes generation

Abstract The behaviour of a bad Tetris player suggests a class of polyominoes that we call prefix-closed. Such a class contains all polyominoes P such that for any integer i > 0 the first i columns of P form a polyomino. We provide a simple discrete dynamical system that allows us to define an algorithm for generating all prefix-closed polyominoes of size n in constant amortized time using O ( n ) space.

[1]  Vladimir Privman,et al.  Radii of gyration of fully and partially directed lattice animals , 1984 .

[2]  S. W. Golomb,et al.  Checker Boards and Polyominoes , 1954 .

[3]  Paolo Massazza,et al.  From Linear Partitions to Parallelogram Polyominoes , 2011, Developments in Language Theory.

[4]  Bernard Derrida,et al.  Directed lattice animals in 2 dimensions : numerical and exact results , 1982 .

[5]  Paolo Massazza On the generation of convex polyominoes , 2015, Discret. Appl. Math..

[6]  Mireille Bousquet-Mélou,et al.  A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..

[7]  Giusi Castiglione,et al.  An Efficient Algorithm for the Generation of Z-Convex Polyominoes , 2014, IWCIA.

[8]  Simone Rinaldi,et al.  The number of Z-convex polyominoes , 2008, Adv. Appl. Math..

[9]  Antonio Restivo,et al.  Reconstruction of L-convex Polyominoes , 2003, Electron. Notes Discret. Math..

[10]  Andrea Frosini,et al.  On the Generation and Enumeration of some Classes of Convex Polyominoes , 2004, Electron. J. Comb..

[11]  I. Jensen,et al.  LETTER TO THE EDITOR: Statistics of lattice animals (polyominoes) and polygons , 2000, cond-mat/0007238.

[12]  Giusi Castiglione,et al.  On the exhaustive generation of k-convex polyominoes , 2017, Theor. Comput. Sci..

[13]  Gérard Viennot,et al.  Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..

[14]  I. Jensen Enumerations of Lattice Animals and Trees , 2000, cond-mat/0007239.

[15]  Paolo Massazza On the generation of L-convex Polyominoes , 2012 .