Vision and the establishment of direction-selectivity: a tale of two circuits

Direction-selective neurons, which respond selectively to motion in one direction, have been characterized in visual circuits across many species. Recently, the development of these directional neurons has been explored in both retina and primary visual cortex (V1). The development of direction-selective cells in V1 requires visual experience. In contrast, direction-selective ganglion cells in retina are present at the age of the earliest light responses. The vision-independent signals guiding the asymmetric wiring underlying retinal direction selectivity remain unknown. The details of how retinal and cortical circuits extract motion information could explain their differing requirements for visual experience in development.

[1]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[2]  F. Werblin,et al.  Directional Selectivity Is Formed at Multiple Levels by Laterally Offset Inhibition in the Rabbit Retina , 2005, Neuron.

[3]  W. R. Levick,et al.  Direction-Selective Ganglion Cells in the Retina , 2001 .

[4]  L. Chalupa,et al.  Retinal waves in mice lacking the β2 subunit of the nicotinic acetylcholine receptor , 2008, Proceedings of the National Academy of Sciences.

[5]  Johann H. Bollmann,et al.  Subcellular Topography of Visually Driven Dendritic Activity in the Vertebrate Visual System , 2009, Neuron.

[6]  Seunghoon Lee,et al.  Synaptic physiology of direction selectivity in the retina , 2008, The Journal of physiology.

[7]  H B Barlow,et al.  Direction-Selective Units in Rabbit Retina: Distribution of Preferred Directions , 1967, Science.

[8]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[9]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[10]  Gregory C. DeAngelis,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[11]  S. Exner,et al.  Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen , 1894 .

[12]  D. Copenhagen,et al.  Visual Deprivation Alters Development of Synaptic Function in Inner Retina after Eye Opening , 2001, Neuron.

[13]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[14]  D. Fitzpatrick,et al.  The development of direction selectivity in ferret visual cortex requires early visual experience , 2006, Nature Neuroscience.

[15]  Minggang Chen,et al.  Physiological properties of direction‐selective ganglion cells in early postnatal and adult mouse retina , 2009, The Journal of physiology.

[16]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[17]  R. Reid,et al.  Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development , 2000, Nature Neuroscience.

[18]  K. L. Myhr,et al.  The development of intrinsic excitability in mouse retinal ganglion cells , 2008, Developmental neurobiology.

[19]  D. Hubel Single unit activity in striate cortex of unrestrained cats , 1959, The Journal of physiology.

[20]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[21]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[22]  Keisuke Yonehara,et al.  Expression of SPIG1 Reveals Development of a Retinal Ganglion Cell Subtype Projecting to the Medial Terminal Nucleus in the Mouse , 2008, PloS one.

[23]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[24]  M. Crair Neuronal activity during development: permissive or instructive? , 1999, Current Opinion in Neurobiology.

[25]  Leonard E. White,et al.  Vision and Cortical Map Development , 2007, Neuron.

[26]  Florian Engert,et al.  Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons , 2002, Nature.

[27]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[28]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  Seunghoon Lee,et al.  A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves , 2006, Nature Neuroscience.

[30]  Shelley I. Fried,et al.  Image Processing: How the Retina Detects the Direction of Image Motion , 2007, Current Biology.

[31]  Nicholas J. Priebe,et al.  Direction Selectivity of Excitation and Inhibition in Simple Cells of the Cat Primary Visual Cortex , 2005, Neuron.

[32]  Jonathan B Demb,et al.  Cellular Mechanisms for Direction Selectivity in the Retina , 2007, Neuron.

[33]  M. Feller,et al.  Mechanisms underlying development of visual maps and receptive fields. , 2008, Annual review of neuroscience.

[34]  Bryan M. Hooks,et al.  Critical Periods in the Visual System: Changing Views for a Model of Experience-Dependent Plasticity , 2007, Neuron.

[35]  R. Freeman,et al.  The Derivation of Direction Selectivity in the Striate Cortex , 2004, The Journal of Neuroscience.

[36]  J. Zanker,et al.  Motion vision : computational, neural, and ecological constraints , 2001 .

[37]  Margaret S Livingstone,et al.  Directional Inhibition A New Slant on an Old Question , 2005, Neuron.

[38]  Marla B Feller,et al.  Retinal waves: mechanisms and function in visual system development. , 2005, Cell calcium.

[39]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[40]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[41]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[42]  Hiroshi Ishikane,et al.  Identification of Retinal Ganglion Cells and Their Projections Involved in Central Transmission of Information about Upward and Downward Image Motion , 2009, PloS one.

[43]  Chuan-Chin Chiao,et al.  Effect of visual experience on the maturation of ON–OFF direction selective ganglion cells in the rabbit retina , 2008, Vision Research.

[44]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[45]  E. Chichilnisky,et al.  Direction Selectivity in the Retina Is Established Independent of Visual Experience and Cholinergic Retinal Waves , 2008, Neuron.

[46]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[47]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[48]  N. Daw,et al.  Raising rabbits in a moving visual environment: an attempt to modify directional sensitivity in the retina , 1974, The Journal of physiology.