Spin-echo entanglement protection from random telegraph noise

We analyze local spin-echo procedures for protecting entanglement between two non-interacting qubits, each subject to pure-dephasing random telegraph noise. For superconducting qubits, this simple model captures the characteristic features of the effect of bistable impurities coupled to the device. An analytic expression for the entanglement dynamics is reported. Peculiar features related to the non-Gaussian nature of the noise already observed in the single-qubit dynamics also occur in the entanglement dynamics for proper values of the ratio g = v/γ, between the qubit–impurity coupling strength and the switching rate of the random telegraph process, and of the separation between the pulses Δt. We found that the echo procedure may delay the disappearance of entanglement, cancel the dynamical structure of entanglement revivals and dark periods and induce peculiar plateau-like behaviors of the concurrence.

[1]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[2]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[3]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[4]  M. Weissman 1/f noise and other slow, nonexponential kinetics in condensed matter. , 1988 .

[5]  Giuseppe Compagno,et al.  Entanglement dynamics in superconducting qubits affected by local bistable impurities , 2012, 1408.6887.

[6]  Rosario Fazio,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[7]  Ren-Bao Liu,et al.  Protection of quantum systems by nested dynamical decoupling , 2010, 1006.1601.

[8]  G. Agarwal Saving entanglement via a nonuniform sequence of π pulses , 2009, 0911.4158.

[9]  B L Altshuler,et al.  Non-Gaussian low-frequency noise as a source of qubit decoherence. , 2005, Physical review letters.

[10]  G. Falci,et al.  Entanglement degradation in the solid state: interplay of adiabatic and quantum noise , 2010 .

[11]  Optimal operating conditions of an entangling two-transmon gate , 2011, 1110.0379.

[12]  L. Ioffe,et al.  Physical implementation of protected qubits , 2012, Reports on progress in physics. Physical Society.

[13]  Michael J. Biercuk,et al.  Experimental Uhrig Dynamical Decoupling using Trapped Ions , 2009, 0902.2957.

[14]  T Yamamoto,et al.  Charge echo in a cooper-pair box. , 2002, Physical review letters.

[15]  G. Falci,et al.  Initial decoherence in solid state qubits. , 2005, Physical review letters.

[16]  B. Altshuler,et al.  Decoherence in qubits due to low-frequency noise , 2009, 0904.4597.

[17]  G. Falci,et al.  Optimal tuning of solid-state quantum gates: A universal two-qubit gate , 2009, 0906.3115.

[18]  P. Joyez,et al.  Decoherence in a superconducting quantum bit circuit , 2005 .

[19]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[20]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[21]  G. Falci,et al.  Decoherence times of universal two-qubit gates in the presence of broad-band noise , 2011, 1105.0333.

[22]  Erik Lucero,et al.  1/f Flux noise in Josephson phase qubits. , 2007, Physical review letters.

[23]  G. Compagno,et al.  An optimized Bell test in a dynamical system , 2010 .

[24]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[25]  Dynamical suppression of telegraph and 1 ∕ f noise due to quantum bistable fluctuators , 2003, cond-mat/0312442.

[26]  M. W. Johnson,et al.  Geometrical dependence of the low-frequency noise in superconducting flux qubits , 2008, 0812.0378.

[27]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[28]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[29]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[30]  S. Saito,et al.  Dephasing of a superconducting flux qubit. , 2007, Physical review letters.

[31]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[32]  G. Compagno,et al.  Long-time preservation of nonlocal entanglement , 2008, 0810.2783.

[33]  Yasunobu Nakamura,et al.  Dynamical decoupling and dephasing in interacting two-level systems. , 2012, Physical review letters.

[34]  J. C. Retamal,et al.  Sudden birth versus sudden death of entanglement in multipartite systems. , 2008, Physical review letters.

[35]  Jiangbin Gong,et al.  Protecting unknown two-qubit entangled states by nesting Uhrig's dynamical decoupling sequences , 2010 .

[36]  Yasunobu Nakamura,et al.  Correlated flux noise and decoherence in two inductively coupled flux qubits , 2010, 1007.1028.

[37]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[38]  Wolf,et al.  Background charge noise in metallic single-electron tunneling devices. , 1996, Physical review. B, Condensed matter.

[39]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[40]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[41]  G. Compagno,et al.  Non-markovian effects on the dynamics of entanglement. , 2007, Physical review letters.

[42]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[43]  Jiangbin Gong,et al.  Optimized dynamical decoupling sequences in protecting two-qubit states , 2011 .

[44]  S. Maniscalco,et al.  DYNAMICS OF QUANTUM CORRELATIONS IN TWO-QUBIT SYSTEMS WITHIN NON-MARKOVIAN ENVIRONMENTS , 2012, 1205.6419.