POLYMER MATERIALS FOR MICROELECTRONICS IMAGING APPLICATIONS

[1]  Elsa Reichmanis,et al.  Positive-tone processing of plasma-polymerized methylsilane (PPMS) , 1998, Advanced Lithography.

[2]  Elsa Reichmanis,et al.  Synthesis of Cycloolefin−Maleic Anhydride Alternating Copolymers for 193 nm Imaging , 1997 .

[3]  Roderick R. Kunz,et al.  Thin-film imaging: Past, present, prognosis , 1997, IBM J. Res. Dev..

[4]  Thomas I. Wallow,et al.  Evaluation of cycloolefin-maleic anhydride alternating copolymers as single-layer photoresists for 193-nm photolithography , 1996, Advanced Lithography.

[5]  Joice P. Mathew,et al.  (η3-Allyl)palladium(II) and Palladium(II) Nitrile Catalysts for the Addition Polymerization of Norbornene Derivatives with Functional Groups , 1996 .

[6]  B. Novak,et al.  Living 1,2-Olefin-Insertion Polymerizations Initiated by Palladium(II) Alkyl Complexes: Block Copolymers and a Route to Polyacetylene-Hydrocarbon Diblocks , 1995 .

[7]  Katsumi Maeda,et al.  Positive chemically amplified resist for ArF excimer laser lithography composed of a novel transparent photoacid generator and an alicyclic terpolymer , 1995, Advanced Lithography.

[8]  Richard A. Di Pietro,et al.  193-nm single-layer positive resists: building etch resistance into a high-resolution imaging system , 1995, Advanced Lithography.

[9]  Naomichi Abe,et al.  Evaluation of chemically amplified resist based on adamantyl methacrylate for 193-nm lithography , 1995, Advanced Lithography.

[10]  Roderick R. Kunz,et al.  Acid-catalyzed single-layer resists for ArF lithography , 1993, Advanced Lithography.

[11]  Timothy W. Weidman,et al.  New photodefinable glass etch masks for entirely dry photolithography: Plasma deposited organosilicon hydride polymers , 1993 .

[12]  A. Pomerene,et al.  Positive mode silylation process characterization , 1992 .

[13]  D. C. Shaver,et al.  Surface imaging of focused ion-beam exposed resists , 1991 .

[14]  G. Somorjai,et al.  Preparation of SixCyHz films from methylsilane by plasma-enhanced chemical vapor deposition , 1991 .

[15]  Elsa Reichmanis,et al.  Chemical Amplification Mechanisms for Microlithography , 1991 .

[16]  C. Willson,et al.  Plasma-Developable Photoresist Systems Based on Chemical Amplification , 1991 .

[17]  Stella W. Pang,et al.  Plasma‐deposited organosilicon thin films as dry resists for deep ultraviolet lithography , 1990 .

[18]  Michael Sebald,et al.  Benefits and prospects of aqueous silylation for novel dry developable high-resolution resists , 1990, Advanced Lithography.

[19]  Christophe Pierrat,et al.  Positive resist image by dry etching: New dry developed positive working system for electron beam and deep ultraviolet lithography , 1989 .

[20]  E. Reichmanis,et al.  A sub-0.5 μm bilevel lithographic process using the deep-UV electron-beam resist P(SI-CMS) , 1989 .

[21]  H. Tamura,et al.  Contribution of Thermal SiO2 Layers on Si Wafer Back Surfaces to Photoconductive Decay Time Measured with Microwave Reflection from Front Surfaces , 1989 .

[22]  C. Grant Willson,et al.  Materials and Processes for Deep-UV Lithography , 1988 .

[23]  S. Turner,et al.  Electronic and photonic applications of polymers , 1988 .

[24]  A. Novembre,et al.  Optimal developer selection for negative acting resists , 1986 .

[25]  Elsa Reichmanis,et al.  Synthesis And Lithographic Characterization Of A Novel Organosilicon Novolac Resin , 1986, Advanced Lithography.

[26]  Nobuyuki Yoshioka,et al.  A High Performance Negative X-Ray Resist : CPMS-X(Pd) , 1985, Advanced Lithography.

[27]  E. Reichmanis,et al.  Oxygen RIE‐Resistant Deep‐UV Positive Resists: Poly (trimethylsilylmethyl methacrylate) and Poly (trimethylsilylmethyl methacrylate‐co‐3‐oximo‐2‐butanone methacrylate) , 1985 .

[28]  C. Stauffer,et al.  Image Reversal Of Positive Photoresist A New Tool For Advancing Integrated Circuit Fabrication , 1985, Advanced Lithography.

[29]  Hiroshi Shiraishi,et al.  Azide-Phenolic Resin Resists Sensitive To Visible Light , 1985, Advanced Lithography.

[30]  Masayoshi Suzuki,et al.  A Silicon Containing Positive Photoresist (SIPR) for a Bilayer Resist System , 1985 .

[31]  H. Moritz,et al.  Optical single layer lift-off process , 1985, IEEE Transactions on Electron Devices.

[32]  Anthony E. Novembre,et al.  Effect of varying the composition of copolymers of glycidyl methacrylate and 3-chlorostyrene (GMC) on electron lithographic performance , 1983 .

[33]  Hiroshi Ito,et al.  Advances in the design of organic resist materials , 1983 .

[34]  P. D. Krasicky,et al.  Copolymers of itaconic acid and methyl methacrylate as positive electron beam resists , 1983 .

[35]  C. Ting,et al.  Multilayer resist technique for submicron optical lithography , 1983 .

[36]  Masayoshi Suzuki,et al.  Copolymers of Trimethylsilylstyrene with Chloromethylstyrene for a Bi‐Layer Resist System , 1983 .

[37]  Tsukasa Tada,et al.  Highly Sensitive Positive Electron Resists Consisting of Halogenated Alkyl α‐Chloroacrylate Series Polymer Materials , 1983 .

[38]  M. O'toole,et al.  Spin‐On Glass as an Intermediate Layer in a Tri‐Layer Resist Process , 1982 .

[39]  Wayne M. Moreau,et al.  State Of The Art Of Acrylate Resists: An Overview Of Polymer Structure And Lithographic Performance , 1982, Advanced Lithography.

[40]  S. Imamura,et al.  Chloromethylated Polystyrene as Deep UV and X-Ray Resist , 1982 .

[41]  C. C. Petropoulos,et al.  High‐sensitivity, high‐resolution, high‐thermal‐resistant negative electron x‐ray resist , 1981 .

[42]  F. Kahn,et al.  Molecular parameters and lithographic performance of poly(chloromethylstyrene)—a high‐performance negative electron resist , 1981 .

[43]  E. Chandross,et al.  Deep‐UV photoresists: Poly(methyl methacrylate‐co‐indenone) , 1981 .

[44]  H. Yanazawa,et al.  Azide-phenolic resin photoresists for deep UV lithography , 1981, IEEE Transactions on Electron Devices.

[45]  R. Twieg,et al.  Deep UV photoresists I. Meldrum's diazo sensitizer , 1981, IEEE Transactions on Electron Devices.

[46]  Elsa Reichmanis,et al.  A novel approach to o‐nitrobenzyl photochemistry for resists , 1981 .

[47]  Gary N. Taylor,et al.  Plasma‐Developed X‐Ray Resists , 1980 .

[48]  E. Reichmanis,et al.  The Effect of Sensitizers on the Photodegradation of Poly (Methyl Methacrylate‐co‐3‐Oximino‐2‐Butanone Methacrylate , 1980 .

[49]  E. Reichmanis,et al.  Preliminary Evaluation of Copolymers of Methyl Methacrylate and Acyloximino Methacrylate as Deep U.V. Resists , 1980 .

[50]  M. Hatzakis,et al.  Speed enhancement of PMMA resist , 1979 .

[51]  C. F. Cook,et al.  Positive electron‐beam resist behavior for methacrylonitrile and methyl α‐chloroacrylate polymers and copolymers , 1979 .

[52]  L. F. Thompson,et al.  Contrast in the electron-beam lithography of substituted aromatic homopolymers and copolymers , 1979 .

[53]  T. Tada Poly(Trifluoroethyl α‐Chloroacrylate as a Highly Sensitive Positive Electron Resist , 1979 .

[54]  L. F. Thompson,et al.  Negative Electron Resists for Direct Device Lithography II . Poly(Glycidyl Methacrylate‐Co‐3‐Chlorostyrene)—Lithographic Performance , 1979 .

[55]  L. F. Thompson,et al.  Negative Electron Resists for Direct Device Lithography I . Initial Material Survey , 1979 .

[56]  Saburo Imamura,et al.  Chloromethylated Polystyrene as a Dry Etching‐Resistant Negative Resist for Submicron Technology , 1979 .

[57]  Y. Shibata,et al.  Some Aspects on the Mechanism of Anodic Oxidation of GaAs , 1979 .

[58]  Y. Taniguchi,et al.  PGMA as a High Resolution, High Sensitivity Negative Electron Beam Resist , 1979 .

[59]  D. Maydan,et al.  High resolution, steep profile, resist patterns , 1979, The Bell System Technical Journal.

[60]  C. Pittman,et al.  Radiation Degradation Study of Poly(methyl α-chloroacrylate) and the Methyl Methacrylate Copolymer , 1978 .

[61]  Yoshiaki Mimura,et al.  Deep-UV Photolithography , 1978 .

[62]  Kei Murase,et al.  Poly (Fluoro Methacrylate) as Highly Sensitive, High Contrast Positive Resist , 1977 .

[63]  B. Lin Deep uv lithography , 1975 .

[64]  J. P. Ballantyne,et al.  Poly(butene‐1 sulfone) —A highly sensitive positive resist , 1975 .

[65]  M. Bowden,et al.  Poly(Vinyl Arene Sulfones) as Novel Positive Photoresists , 1975 .

[66]  E. Poindexter,et al.  Increased radiation degradation in methyl methacrylate copolymers , 1975 .

[67]  S. Nonogaki,et al.  Epoxide‐Containing Polymers as Highly Sensitive Electron‐Beam Resists , 1971 .

[68]  J. H. O′donnell,et al.  The Degradation of Poly(butene-1 sulfone) during γ Irradiation , 1970 .

[69]  M. Hatzakis,et al.  Electron Resists for Microcircuit and Mask Production , 1969 .

[70]  J. Bardeen,et al.  The transistor, a semi-conductor triode , 1948 .

[71]  P. Sartoratto,et al.  Photooxidation studies on branched polysilanes , 1997 .

[72]  Ei Yano,et al.  Impact of 2-Methyl-2-Adamantyl Group Used for 193-nm Single-layer Resist , 1996 .

[73]  Naomi Shida,et al.  NOVEL ArF EXCIMER LASER RESISTS BASED ON MENTHYL METHACRYLATE TERPOLYMER , 1996 .

[74]  R. D. Allen,et al.  RESOLUTION AND ETCH RESISTANCE OF A FAMILY OF 193nm POSITIVE RESISTS , 1995 .

[75]  C. G. Willson,et al.  Introduction to microlithography , 1994 .

[76]  Hiroshi Ito TOP SURFACE IMAGING SYSTEMS UTILIZING POLY(VINYLBENZOIC ACID) AND ITS ESTER , 1992 .

[77]  T. Takigawa Quarter Micron Lithography , 1992 .

[78]  C. Willson,et al.  Approaches to the Design of Radiation‐Sensitive Polymeric Imaging Systems with Improved Sensitivity and Resolution , 1986 .

[79]  A. Novembre,et al.  Lithographic evaluation and processing of chlorinated polymethylstyrene , 1985 .

[80]  T. Bowmer,et al.  γ-radiolysis of dialkyl, alkyl-aryl and diaryl sulphones: A volatile product study , 1981 .

[81]  C. Pittman,et al.  Radiation degradation of methyl α‐chloroacrylate–methacrylonitrile copolymers , 1980 .

[82]  J. H. O′donnell,et al.  γ Radiolysis of poly (butene-1 sulfone) and poly(hexene-1 sulfone) , 1972 .