Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation

We propose quantum versions of the Bell-Ziv-Zakai lower bounds on the error in multiparameter estimation. As an application we consider measurement of a time-varying optical phase signal with stationary Gaussian prior statistics and a power law spectrum $\sim 1/|\omega|^p$, with $p>1$. With no other assumptions, we show that the mean-square error has a lower bound scaling as $1/{\cal N}^{2(p-1)/(p+1)}$, where ${\cal N}$ is the time-averaged mean photon flux. Moreover, we show that this accuracy is achievable by sampling and interpolation, for any $p>1$. This bound is thus a rigorous generalization of the Heisenberg limit, for measurement of a single unknown optical phase, to a stochastically varying optical phase.

[1]  Pieter Kok,et al.  Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .

[2]  L. Davidovich,et al.  Quantum metrological limits via a variational approach. , 2012, Physical review letters.

[3]  T. Kailath The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .

[4]  H. M. Wiseman,et al.  Universality of the Heisenberg limit for estimates of random phase shifts , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[5]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[6]  W. Marsden I and J , 2012 .

[7]  Seth Lloyd,et al.  Quantum theory of optical temporal phase and instantaneous frequency , 2008 .

[8]  W. M. Liu,et al.  Unbounded quantum Fisher information in two-path interferometry with finite photon number , 2011, 1105.2990.

[9]  A. Luis Signal detection without finite-energy limits to quantum resolution , 2012, 1203.4325.

[10]  Ian Fuss,et al.  Quantum phase detection and digital communication , 1991 .

[11]  Robert Kosut,et al.  Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits , 2008, 0812.4635.

[12]  Aravind Chiruvelli,et al.  Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.

[13]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[14]  Hall,et al.  Gaussian noise and quantum-optical communication. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[15]  Dominic W Berry,et al.  Stochastic Heisenberg limit: optimal estimation of a fluctuating phase. , 2013, Physical review letters.

[16]  Edward H. Chen,et al.  True Limits to Precision via Unique Quantum Probe , 2014 .

[17]  M. Kolobov The spatial behavior of nonclassical light , 1999 .

[18]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[19]  Milburn,et al.  Optimal quantum measurements for phase estimation. , 1995, Physical review letters.

[20]  Pieter Kok,et al.  General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.

[21]  Shuntaro Takeda,et al.  Quantum-Enhanced Optical-Phase Tracking , 2012, Science.

[22]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[23]  Nicolas Treps,et al.  A Quantum Laser Pointer , 2003, Science.

[24]  Godfried T. Toussaint,et al.  Comments on "The Divergence and Bhattacharyya Distance Measures in Signal Selection" , 1972, IEEE Transactions on Communications.

[25]  Quantum measurement eigenkets for continuous-time direct detection , 1998 .

[26]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[27]  C. L. Latune,et al.  Quantum limit for the measurement of a classical force coupled to a noisy quantum-mechanical oscillator , 2012, 1210.3316.

[28]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[29]  S. Lloyd,et al.  Quantum limits to dynamical evolution , 2002, quant-ph/0210197.

[30]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[31]  Carl W. Helstrom,et al.  Noncommuting observables in quantum detection and estimation theory , 1974, IEEE Trans. Inf. Theory.

[32]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[33]  A. Luis,et al.  Alternative measures of uncertainty in quantum metrology: Contradictions and limits , 2012, 1201.3072.

[34]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[35]  Jacob Ziv,et al.  Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.

[36]  E H Huntington,et al.  Adaptive optical phase estimation using time-symmetric quantum smoothing. , 2009, Physical review letters.

[37]  Michael J. W. Hall,et al.  Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.

[38]  Wiseman,et al.  Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.

[39]  Yoram Bresler,et al.  A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.

[40]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[41]  L. Davidovich,et al.  Quantum Metrology for Noisy Systems , 2011 .

[42]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[43]  Seth Lloyd,et al.  Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.

[44]  Heng Fan,et al.  Quantum Metrological Bounds for Vector Parameter in Presence of Noise , 2014, 1402.6197.

[45]  Michael J. W. Hall,et al.  Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates , 2012, 1209.3547.

[46]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[47]  Joachim Knittel,et al.  Biological measurement beyond the quantum limit , 2012, Nature Photonics.

[48]  M. Tsang Quantum imaging beyond the diffraction limit by optical centroid measurements. , 2009, Physical review letters.

[49]  Carlton M. Caves,et al.  Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[50]  Seth Lloyd,et al.  Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time , 2008, 0902.3034.

[51]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[52]  H.M. Wiseman,et al.  Adaptive phase measurements for narrowband squeezed beams , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[53]  Mankei Tsang,et al.  Quantum metrology with open dynamical systems , 2013, 1301.5733.

[54]  Yossef Steinberg,et al.  Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.

[55]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[56]  H. Paul,et al.  Realistic quantum states of light with minimum phase uncertainty , 1991 .

[57]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[58]  Hidehiro Yonezawa,et al.  Quantum-limited mirror-motion estimation. , 2013, Physical review letters.

[59]  Mankei Tsang,et al.  Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.

[60]  H. M. Wiseman,et al.  Adaptive quantum measurements of a continuously varying phase , 2002 .

[61]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[62]  Vittorio Giovannetti,et al.  Sub-Heisenberg estimation strategies are ineffective. , 2012, Physical review letters.

[63]  'Angel Rivas,et al.  Sub-Heisenberg estimation of non-random phase shifts , 2011, 1105.6310.

[64]  H. V. Trees,et al.  Part I. Detection, Estimation, and Linear Modulation Theory , 2013 .

[65]  R. Nair,et al.  Fundamental Quantum Limits to Waveform Detection , 2012, 1204.3697.

[66]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[67]  Ou Complementarity and Fundamental Limit in Precision Phase Measurement. , 1996, Physical review letters.