Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation
暂无分享,去创建一个
Mankei Tsang | Michael J. W. Hall | Howard M. Wiseman | Dominic W. Berry | D. Berry | H. Wiseman | M. Tsang | M. Hall
[1] Pieter Kok,et al. Erratum: General Optimality of the Heisenberg Limit for Quantum Metrology [Phys. Rev. Lett. 105, 180402 (2010)] , 2011 .
[2] L. Davidovich,et al. Quantum metrological limits via a variational approach. , 2012, Physical review letters.
[3] T. Kailath. The Divergence and Bhattacharyya Distance Measures in Signal Selection , 1967 .
[4] H. M. Wiseman,et al. Universality of the Heisenberg limit for estimates of random phase shifts , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).
[5] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[6] W. Marsden. I and J , 2012 .
[7] Seth Lloyd,et al. Quantum theory of optical temporal phase and instantaneous frequency , 2008 .
[8] W. M. Liu,et al. Unbounded quantum Fisher information in two-path interferometry with finite photon number , 2011, 1105.2990.
[9] A. Luis. Signal detection without finite-energy limits to quantum resolution , 2012, 1203.4325.
[10] Ian Fuss,et al. Quantum phase detection and digital communication , 1991 .
[11] Robert Kosut,et al. Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits , 2008, 0812.4635.
[12] Aravind Chiruvelli,et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. , 2009, Physical review letters.
[13] Vadim N. Smelyanskiy,et al. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.
[14] Hall,et al. Gaussian noise and quantum-optical communication. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[15] Dominic W Berry,et al. Stochastic Heisenberg limit: optimal estimation of a fluctuating phase. , 2013, Physical review letters.
[16] Edward H. Chen,et al. True Limits to Precision via Unique Quantum Probe , 2014 .
[17] M. Kolobov. The spatial behavior of nonclassical light , 1999 .
[18] A. Gualtierotti. H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .
[19] Milburn,et al. Optimal quantum measurements for phase estimation. , 1995, Physical review letters.
[20] Pieter Kok,et al. General optimality of the Heisenberg limit for quantum metrology. , 2010, Physical review letters.
[21] Shuntaro Takeda,et al. Quantum-Enhanced Optical-Phase Tracking , 2012, Science.
[22] S. Lloyd,et al. Advances in quantum metrology , 2011, 1102.2318.
[23] Nicolas Treps,et al. A Quantum Laser Pointer , 2003, Science.
[24] Godfried T. Toussaint,et al. Comments on "The Divergence and Bhattacharyya Distance Measures in Signal Selection" , 1972, IEEE Transactions on Communications.
[25] Quantum measurement eigenkets for continuous-time direct detection , 1998 .
[26] A. Isar,et al. ABOUT QUANTUM-SYSTEMS , 2004 .
[27] C. L. Latune,et al. Quantum limit for the measurement of a classical force coupled to a noisy quantum-mechanical oscillator , 2012, 1210.3316.
[28] John K. Stockton,et al. Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.
[29] S. Lloyd,et al. Quantum limits to dynamical evolution , 2002, quant-ph/0210197.
[30] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[31] Carl W. Helstrom,et al. Noncommuting observables in quantum detection and estimation theory , 1974, IEEE Trans. Inf. Theory.
[32] S. Lloyd,et al. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.
[33] A. Luis,et al. Alternative measures of uncertainty in quantum metrology: Contradictions and limits , 2012, 1201.3072.
[34] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[35] Jacob Ziv,et al. Some lower bounds on signal parameter estimation , 1969, IEEE Trans. Inf. Theory.
[36] E H Huntington,et al. Adaptive optical phase estimation using time-symmetric quantum smoothing. , 2009, Physical review letters.
[37] Michael J. W. Hall,et al. Does Nonlinear Metrology Offer Improved Resolution? Answers from Quantum Information Theory , 2012, 1205.2405.
[38] Wiseman,et al. Adaptive phase measurements of optical modes: Going beyond the marginal Q distribution. , 1995, Physical review letters.
[39] Yoram Bresler,et al. A global lower bound on parameter estimation error with periodic distortion functions , 2000, IEEE Trans. Inf. Theory.
[40] P. Humphreys,et al. Quantum enhanced multiple phase estimation. , 2013, Physical review letters.
[41] L. Davidovich,et al. Quantum Metrology for Noisy Systems , 2011 .
[42] H. V. Trees,et al. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .
[43] Seth Lloyd,et al. Quantum measurement bounds beyond the uncertainty relations. , 2011, Physical review letters.
[44] Heng Fan,et al. Quantum Metrological Bounds for Vector Parameter in Presence of Noise , 2014, 1402.6197.
[45] Michael J. W. Hall,et al. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates , 2012, 1209.3547.
[46] M. Paris. Quantum estimation for quantum technology , 2008, 0804.2981.
[47] Joachim Knittel,et al. Biological measurement beyond the quantum limit , 2012, Nature Photonics.
[48] M. Tsang. Quantum imaging beyond the diffraction limit by optical centroid measurements. , 2009, Physical review letters.
[49] Carlton M. Caves,et al. Fundamental quantum limit to waveform estimation , 2010, CLEO: 2011 - Laser Science to Photonic Applications.
[50] Seth Lloyd,et al. Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous-time , 2008, 0902.3034.
[51] L. Davidovich,et al. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.
[52] H.M. Wiseman,et al. Adaptive phase measurements for narrowband squeezed beams , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.
[53] Mankei Tsang,et al. Quantum metrology with open dynamical systems , 2013, 1301.5733.
[54] Yossef Steinberg,et al. Extended Ziv-Zakai lower bound for vector parameter estimation , 1997, IEEE Trans. Inf. Theory.
[55] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[56] H. Paul,et al. Realistic quantum states of light with minimum phase uncertainty , 1991 .
[57] Rafał Demkowicz-Dobrzański,et al. The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.
[58] Hidehiro Yonezawa,et al. Quantum-limited mirror-motion estimation. , 2013, Physical review letters.
[59] Mankei Tsang,et al. Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.
[60] H. M. Wiseman,et al. Adaptive quantum measurements of a continuously varying phase , 2002 .
[61] Klauder,et al. SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.
[62] Vittorio Giovannetti,et al. Sub-Heisenberg estimation strategies are ineffective. , 2012, Physical review letters.
[63] 'Angel Rivas,et al. Sub-Heisenberg estimation of non-random phase shifts , 2011, 1105.6310.
[64] H. V. Trees,et al. Part I. Detection, Estimation, and Linear Modulation Theory , 2013 .
[65] R. Nair,et al. Fundamental Quantum Limits to Waveform Detection , 2012, 1204.3697.
[66] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[67] Ou. Complementarity and Fundamental Limit in Precision Phase Measurement. , 1996, Physical review letters.