Transformations amongst the Walsh, Haar, Arithmetic and Reed-Muller Spectral Domains

Direct transformation amongst the Walsh, Haar, Arithmetic and Reed-Muller spectral domains is considered. Matrix based techniques are developed and it is shown that these can be implemented as fast in-place transforms. It is also shown that these transforms can be implemented directly on decision diagram representations.

[1]  E.M. Clarke,et al.  Hybrid decision diagrams. Overcoming the limitations of MTBDDs and BMDs , 1995, Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[2]  Tsutomu Sasao,et al.  Switching Theory for Logic Synthesis , 1999, Springer US.

[3]  Stanley L. Hurst The logical processing of digital signals , 1978 .

[4]  John L. Shanks,et al.  Computation of the Fast Walsh-Fourier Transform , 1969, IEEE Transactions on Computers.

[5]  H. Rademacher,et al.  Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen , 1922 .

[6]  Massoud Pedram,et al.  Edge Valued Binary Decision Diagrams , 1996 .

[7]  K. R. Rao,et al.  Orthogonal Transforms for Digital Signal Processing , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Irving S. Reed,et al.  A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.

[9]  J.P. Hansen,et al.  Decision diagram based techniques for the Haar wavelet transform , 1997, Proceedings of ICICS, 1997 International Conference on Information, Communications and Signal Processing. Theme: Trends in Information Systems Engineering and Wireless Multimedia Communications (Cat..

[10]  Bogdan J. Falkowski,et al.  Relationship between arithmetic and Haar wavelet transforms in the form of layered Kronecker matrices , 1999 .

[11]  Melvin A. Breuer,et al.  Probabilistic Aspects of Boolean Switching Functions via a New Transform , 1981, JACM.

[12]  Stanley L. Hurst,et al.  Spectral techniques in digital logic , 1985 .

[13]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[14]  Enrico Macii,et al.  Algebraic decision diagrams and their applications , 1993, Proceedings of 1993 International Conference on Computer Aided Design (ICCAD).

[15]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[16]  Bogdan J. Falkowski Forward and inverse transformations between Haar wavelet and arithmetic functions , 1998 .

[17]  J. Walsh A Closed Set of Normal Orthogonal Functions , 1923 .

[18]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[19]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[20]  B. Sankur,et al.  Applications of Walsh and related functions , 1986 .

[21]  Bogdan J. Falkowski,et al.  Walsh-like functions and their relations , 1996 .

[22]  Mark G. Karpovsky,et al.  Spectral Techniques and Fault Detection , 1985 .

[23]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[24]  Klaus D. Heidtmann,et al.  Arithmetic Spectrum Applied to Fault Detection for Combinational Networks , 1991, IEEE Trans. Computers.

[25]  Bogdan J. Falkowski,et al.  A Note on the Polynomial Form of Boolean Functions and Related Topics , 1999, IEEE Trans. Computers.

[26]  Jennifer Wallis,et al.  On Hadamard matrices , 1975 .

[27]  David E. Muller,et al.  Application of Boolean algebra to switching circuit design and to error detection , 1954, Trans. I R E Prof. Group Electron. Comput..

[28]  Yung-Te Lai,et al.  Edge-valued binary decision diagrams for multi-level hierarchical verification , 1992, DAC '92.

[29]  Masahiro Fujita,et al.  Multi-Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation , 1997, Formal Methods Syst. Des..