Zn-Doping of GaAs Nanowires Grown by Aerotaxy
暂无分享,去创建一个
Mats-Erik Pistol | Lars Samuelson | Knut Deppert | Fangfang Yang | Maria E. Messing | L. Samuelson | M. Messing | K. Deppert | Fangfang Yang | M. Magnusson | M. Pistol | Kilian Mergenthaler | K. Mergenthaler | Martin H. Magnusson
[1] H. Shtrikman,et al. Stacking-faults-free zinc Blende GaAs nanowires. , 2009, Nano letters.
[2] Yi Cui,et al. Nanowire Solar Cells , 2011 .
[3] W. Prost,et al. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth , 2009 .
[4] R. LaPierre,et al. III–V nanowire photovoltaics: Review of design for high efficiency , 2013 .
[5] K. Thelander. A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires , 2008 .
[6] J. Wallentin,et al. Large-energy-shift photon upconversion in degenerately doped InP nanowires by direct excitation into the electron gas , 2013, Nano Research.
[7] Yu Huang,et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.
[8] M. Ek,et al. Changes in contact angle of seed particle correlated with increased zincblende formation in doped InP nanowires. , 2010, Nano letters.
[9] Lars Samuelson,et al. Nanowire single-electron memory. , 2005, Nano letters.
[10] Lars Samuelson,et al. Continuous gas-phase synthesis of nanowires with tunable properties , 2012, Nature.
[11] Elias Vlieg,et al. Twinning superlattices in indium phosphide nanowires , 2008, Nature.
[12] M. Cardona,et al. Photoluminescence in heavily doped GaAs. I. Temperature and hole-concentration dependence , 1980 .
[13] H. G. Scheibel,et al. Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm , 1983 .
[14] K. Dick,et al. Precursor evaluation for in situ InP nanowire doping , 2008, Nanotechnology.
[15] V. Zwiller,et al. Single quantum dot nanowire LEDs. , 2007, Nano letters.
[16] Chennupati Jagadish,et al. High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization , 2008 .
[17] Lars Samuelson,et al. Gold Nanoparticles: Production, Reshaping, and Thermal Charging , 1999 .
[18] H. Riel,et al. Toward Nanowire Electronics , 2008, IEEE Transactions on Electron Devices.
[19] Kenji Hiruma,et al. GaAs p‐n junction formed in quantum wire crystals , 1992 .
[20] Charles M. Lieber,et al. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.
[21] R. LaPierre,et al. Control of GaAs nanowire morphology and crystal structure , 2008, Nanotechnology.
[22] Jesper Wallentin,et al. Doping of semiconductor nanowires , 2011 .
[23] F. Dimroth,et al. InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.
[24] T. Fukui,et al. A III–V nanowire channel on silicon for high-performance vertical transistors , 2012, Nature.
[25] T. Katsuyama,et al. GaAs free‐standing quantum‐size wires , 1993 .
[26] Lars Samuelson,et al. Solid-phase diffusion mechanism for GaAs nanowire growth , 2004, Microscopy and Microanalysis.
[27] W. Prost,et al. n-Type Doping of Vapor–Liquid–Solid Grown GaAs Nanowires , 2010, Nanoscale research letters.
[28] Michael Grätzel,et al. Gallium arsenide p-i-n radial structures for photovoltaic applications , 2009 .
[29] P. Caroff,et al. Crystal Phases in III--V Nanowires: From Random Toward Engineered Polytypism , 2011, IEEE Journal of Selected Topics in Quantum Electronics.
[30] Erik Lind,et al. III-V Nanowires—Extending a Narrowing Road , 2010, Proceedings of the IEEE.
[31] E. Bakkers,et al. Remote p-doping of InAs nanowires. , 2007, Nano letters.