Numerical Modeling and Prediction of Irreversibilities in Sub- and Supercritical Turbulent Near-Wall Flows

Most of heat transport and fluid flow occurring in nature and in technical applications are inherently turbulent. On closer inspection of turbulent flows, a wide range of length and time scales can be observed and it is obvious that these turbulent motions are unsteady, irregular and chaotic. Turbulent structures generally increase the disorder of the system resulting in a loss of available mechanical power, which can be expressed in terms of entropy production. This is the fundamental reason for irreversibilities in turbulent heat and fluid flows, and responsible for decreasing thermodynamic efficiency in many engineering devices. In spite of decades of research in the field of numerical simulations, it is still difficult to predict turbulent flows and causes of irreversibilities accurately. In this respect, large eddy simulations (LES) provide a promising approach, especially in dealing with turbulent flows with large scale, unsteady characteristics. Despite the great potential of LES, the extent of its usage for entropy generation analysis and thermodynamic optimization has been insignificant up to now. This can be mainly attributed to the high challenges in modeling of the unresolved irreversibilities in the subgrid. The present work is focused on the development of a reliable LES framework combined with the second law of thermodynamics that allows to characterize and optimize sub- and supercritical wall-bounded flow applications. This is progressively accomplished in a series of development steps including (1) the development of reliable numerical treatments to simulate turbulent heat and fluid flow in the context of large eddy and direct numerical simulations (DNS), (2) the development of advanced, wall-adapting subgrid-scale models for momentum transport, heat transport and entropy production, and (3) the generation of comprehensive DNS databases that allow to evaluate the present LES framework under realistic flow situations with complex thermodynamic properties. In order to establish the validity of the present approach, the numerical methods and models are systematically assessed by comparison with experimental and DNS reference data. Finally, the proposed LES framework is utilized to characterize supercritical fuel injection processes and to optimize impingement cooling devices based on the concept of entropy generation minimization (EGM). Important milestones towards LES as a reliable engineering tool for entropy generation analysis are achieved in this work. In particular, a new wall-adapting one-equation subgrid-scale model is proposed, which provides the correct asymptotic behavior in the near-wall region without using any ad-hoc or dynamic procedure. Regarding the subgrid-scale heat flux, a thermodynamically consistent heat flux model suitable for wall-bounded turbulent heat transport is proposed. Finally, using the inertial-convective subrange theory, appropriate closure terms for the subgrid-scale entropy generation related to friction loss and heat transport are derived. The developed LES framework is then used to characterize supercritical injection processes and to optimize impingement cooling. Based on entropy generation analysis, distinctive features of the disintegration process under supercritical conditions are described and optimal designs for impingement cooling devices are identified. This work demonstrates, that LES combined with second law analysis is a very valuable and viable tool for predictive engineering and design optimization of complex heat and fluid flow applications.

[1]  S. Pope Ten questions concerning the large-eddy simulation of turbulent flows , 2004 .

[2]  H. Herwig,et al.  Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions , 2004 .

[3]  Markus Klein Towards LES as an engineering tool , 2008 .

[4]  Milo Koretsky Engineering and Chemical Thermodynamics , 2003 .

[5]  Sébastien Candel,et al.  Structure of cryogenic flames at elevated pressures , 2000 .

[6]  Paul G. Tucker,et al.  LES of Impingement Heat Transfer on a Concave Surface , 2010 .

[7]  Eugene Yee,et al.  A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection , 2007 .

[8]  Mark A. McHugh,et al.  Equation of state modeling of high-pressure, high-temperature hydrocarbon density data , 2010 .

[9]  R. L. Robinson,et al.  Volume-translated Peng–Robinson equation of state for saturated and single-phase liquid densities , 2012 .

[10]  Tsuguo Kondoh,et al.  A Mixed-Time-Scale SGS Model With Fixed Model-Parameters for Practical LES , 2002 .

[11]  Paul M. Mathias,et al.  A density correction for the Peng—Robinson equation of state , 1989 .

[12]  Johannes Janicka,et al.  Thermal Transport and Entropy Production Mechanisms in a Turbulent Round Jet at Supercritical Thermodynamic Conditions , 2017, Entropy.

[13]  B. Niceno,et al.  Large Eddy Simulation of multiple impinging jets in hexagonal configuration - Flow dynamics and heat transfer characteristics , 2017 .

[14]  Sébastien Candel,et al.  Transcritical oxygen/transcritical or supercritical methane combustion , 2005 .

[15]  J. Lumley,et al.  Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet , 1993, Journal of Fluid Mechanics.

[16]  Salem Banooni,et al.  Investigation of heat transfer processes involved liquid impingement jets: a review , 2013 .

[17]  Richard D. Sandberg,et al.  A primer on direct numerical simulation of turbulence - methods, procedures and guidelines , 2010 .

[18]  Ken-ichi Abe,et al.  Towards the development of a Reynolds-averaged algebraic turbulent scalar-flux model , 2001 .

[19]  Lei Shi,et al.  Entropy Generation Analysis and Performance Evaluation of Turbulent Forced Convective Heat Transfer to Nanofluids , 2017, Entropy.

[20]  D. Wen,et al.  Experimental study of curvature effects on jet impingement heat transfer on concave surfaces , 2017 .

[21]  J. P. Boris,et al.  New insights into large eddy simulation , 1992 .

[22]  N. Saniei,et al.  Heat Transfer From an Obliquely Impinging Circular Air Jet to a Flat Plate , 1996, Heat Transfer: Volume 2 — Heat Transfer in Turbulent Flows; Fundamentals of Convection Heat Transfer; Fundamentals of Natural Convection in Laminar and Turbulent Flows; Natural Circulation.

[23]  Stavros Tavoularis,et al.  Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1 , 1981, Journal of Fluid Mechanics.

[24]  Kui Soon Kim An experimental study on the flow and heat transfer characteristics of an impinging jet , 1993 .

[25]  P. Hrycak,et al.  Heat transfer from round impinging jets to a flat plate , 1983 .

[26]  Hrvoje Jasak,et al.  Error analysis and estimation for the finite volume method with applications to fluid flows , 1996 .

[27]  Johan Meyers,et al.  Error-Landscape Assessment of Large-Eddy Simulations: A Review of the Methodology , 2011, J. Sci. Comput..

[28]  Anthony Ruiz,et al.  Large-Eddy Simulation of Supercritical-Pressure Round Jets , 2010 .

[29]  G. Batchelor Diffusion in a Field of Homogeneous Turbulence. I. Eulerian Analysis , 1949 .

[30]  A. Dewan,et al.  Recent Trends in Computation of Turbulent Jet Impingement Heat Transfer , 2012 .

[31]  Y. Akansu,et al.  Flow field and heat transfer characteristics in an oblique slot jet impinging on a flat plate , 2008 .

[32]  Impingement cooling from a circular jet in a cross flow , 1975 .

[33]  Majid Bazargan,et al.  Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids , 2014 .

[34]  Ingo Müller Thermodynamik : die Grundlagen der Materialtheorie , 1973 .

[35]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[36]  Michael Oschwald,et al.  Supercritical nitrogen free jet investigated by spontaneous Raman scattering , 1999 .

[37]  G. Grötzbach,et al.  Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection , 1983 .

[38]  K. E. Starling,et al.  Generalized multiparameter correlation for nonpolar and polar fluid transport properties , 1988 .

[39]  James W. Baughn,et al.  Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet , 1989 .

[40]  Yuichi Matsuo,et al.  DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects , 1999 .

[41]  Daniel T. Banuti,et al.  Crossing the Widom-line – Supercritical pseudo-boiling , 2015 .

[42]  Taehoon Kim,et al.  Numerical study of cryogenic liquid nitrogen jets at supercritical pressures , 2011 .

[43]  B. Weigand,et al.  LES simulations of an impinging jet: On the origin of the second peak in the Nusselt number distribution , 2013 .

[44]  Geoffrey T. Parks,et al.  Numerical evaluation of entropy generation in isolated airfoils and Wells turbines , 2018, Meccanica.

[45]  C. J. Greenshields,et al.  Implementation of semi‐discrete, non‐staggered central schemes in a colocated, polyhedral, finite volume framework, for high‐speed viscous flows , 2009 .

[46]  S. K. Som,et al.  Thermodynamic irreversibilities and exergy balance in combustion processes , 2008 .

[47]  Johan Meyers,et al.  Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows , 2007 .

[48]  Bernhard Weigand,et al.  MULTIPLE JET IMPINGEMENT − A REVIEW , 2009 .

[49]  Masud Behnia,et al.  Numerical study of turbulent heat transfer in confined and unconfined impinging jets , 1999 .

[50]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[51]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[52]  Suresh V. Garimella,et al.  Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement , 2000 .

[53]  Rached Ben-Mansour,et al.  Entropy Generation in Laminar Fluid Flow through a Circular Pipe , 2003, Entropy.

[54]  T. A. Zang,et al.  Direct and large-eddy simulations of three-dimensional compressible Navier-Stokes turbulence , 1992 .

[55]  Bruce Chehroudi,et al.  Measurements in an Acoustically-Driven Coaxial Jet Under Sub-, Near-, and Supercritical Conditions (PREPRINT) , 2005 .

[56]  J. Sesterhenn,et al.  Statistics of fully turbulent impinging jets , 2016, Journal of Fluid Mechanics.

[57]  A. Datta Effects of gravity on structure and entropy generation of confined laminar diffusion flames , 2005 .

[58]  M. Bovo,et al.  Single pulse jet impingement on inclined surface, heat transfer and flow field , 2013 .

[59]  J. Yoo,et al.  Effects of large density variation on strongly heated internal air flows , 2006 .

[60]  Douglas K. Lilly,et al.  A comparison of two dynamic subgrid closure methods for turbulent thermal convection , 1994 .

[61]  T. J. Hanratty,et al.  Measurements of turbulent flow in a channel at low Reynolds numbers , 1990 .

[62]  A. Dewan,et al.  Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer , 2013 .

[63]  F. Nicoud,et al.  Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor , 1999 .

[64]  S. Menon,et al.  Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence , 1994 .

[65]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[66]  P. E. Lapenna Characterization of pseudo-boiling in a transcritical nitrogen jet , 2018, Physics of Fluids.

[67]  Ulrich Schumann,et al.  Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.

[68]  A. Bejan Second law analysis in heat transfer , 1980 .

[69]  A. W. Vreman An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications , 2004 .

[70]  Bernardus J. Geurts,et al.  COMPARISON OF NUMERICAL SCHEMES IN LARGE-EDDY SIMULATION OF THE TEMPORAL MIXING LAYER , 1996 .

[71]  Nilanjan Chakraborty,et al.  A Direct Numerical Simulation-Based Analysis of Entropy Generation in Turbulent Premixed Flames , 2013, Entropy.

[72]  Peyman Givi,et al.  Large Eddy Simulation of Heat and Mass Transport in Turbulent Flows , 2009 .

[73]  Ulrich Schumann THE COUNTERGRADIENT HEAT FLUX IN TURBULENT STRATIFIED FLOWS , 1987 .

[74]  Barry Koren,et al.  Quasi-DNS capabilities of OpenFOAM for different mesh types , 2014 .

[75]  B. L. Button,et al.  A review of heat transfer data for single circular jet impingement , 1992 .

[76]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[77]  S. V. Prabhu,et al.  Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle , 2008 .

[78]  Johannes Janicka,et al.  Assessment Measures for Engineering LES Applications , 2009 .

[79]  F. Ham,et al.  Method of manufactured solutions applied to variable-density flow solvers , 2022 .

[80]  Hiroshi Tamura,et al.  Injection and Mixing Processes in High-Pressure Liquid Oxygen/Gaseous Hydrogen Rocket Combustors , 2000 .

[81]  Michael Schäfer,et al.  Computational Engineering - Introduction to Numerical Methods , 2006 .

[82]  Gautam Biswas,et al.  Large-eddy simulation of flow and heat transfer in an impinging slot jet , 2001 .

[83]  Heinz Herwig,et al.  Local entropy production in turbulent shear flows: A tool for evaluating heat transfer performance , 2006 .

[84]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[85]  Kemal Hanjalic,et al.  Vortical structures and heat transfer in a round impinging jet , 2008, Journal of Fluid Mechanics.

[86]  Kefa Cen,et al.  Direct Numerical Simulation of Subsonic Round Turbulent Jet , 2010 .

[87]  Takeo Kajishima,et al.  One-Equation Subgrid Scale Model Using Dynamic Procedure for the Energy Production , 2006 .

[88]  K. Hanjalic,et al.  Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays , 2005, Journal of Fluid Mechanics.

[89]  Patrick Knupp,et al.  Code Verification by the Method of Manufactured Solutions , 2000 .

[90]  Toshitake Ando,et al.  Direct Numerical Simulation of Active-Controlled Impinging Jets , 2009 .

[91]  Joseph C. Oefelein,et al.  MIXING AND COMBUSTION OF CRYOGENIC OXYGEN-HYDROGEN SHEAR-COAXIAL JET FLAMES AT SUPERCRITICAL PRESSURE , 2006 .

[92]  B. Geurts,et al.  A framework for predicting accuracy limitations in large-eddy simulation , 2002 .

[93]  Thomas M. Eidson,et al.  Numerical simulation of the turbulent Rayleigh–Bénard problem using subgrid modelling , 1985, Journal of Fluid Mechanics.

[94]  Y. Huai Large eddy simulation in the scalar field , 2006 .

[95]  R. Viskanta Heat transfer to impinging isothermal gas and flame jets , 1993 .

[96]  W. Mayer,et al.  Atomization and Breakup of Cryogenic Propellants Under High-Pressure Subcritical and Supercritical Conditions , 1998 .

[97]  Francis H. Harlow,et al.  Transport Equations in Turbulence , 1970 .

[98]  Stefan Hickel,et al.  Large-eddy simulation of nitrogen injection at trans- and supercritical conditions , 2016 .

[99]  Varun,et al.  Numerical modeling of compression ignition engine: A review , 2013 .

[100]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[101]  P. Moin,et al.  A dynamic localization model for large-eddy simulation of turbulent flows , 1995, Journal of Fluid Mechanics.

[102]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[103]  Josette Bellan,et al.  Direct numerical simulation of a transitional supercritical binary mixing layer: heptane and nitrogen , 2002, Journal of Fluid Mechanics.

[104]  Andre Peneloux,et al.  A consistent correction for Redlich-Kwong-Soave volumes , 1982 .

[105]  S. Corrsin On the Spectrum of Isotropic Temperature Fluctuations in an Isotropic Turbulence , 1951 .

[106]  Laszlo Fuchs,et al.  LARGE EDDY SIMULATIONS OF A FORCED SEMICONFINED CIRCULAR IMPINGING JET , 1998 .

[107]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[108]  D. Lilly,et al.  A proposed modification of the Germano subgrid‐scale closure method , 1992 .

[109]  A. Sadiki,et al.  A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations , 2003 .

[110]  S. Benhamadouche,et al.  Investigation of the interaction of a turbulent impinging jet and a heated, rotating disk , 2014 .

[111]  Hirofumi Hattori,et al.  Direct Numerical Simulation of Turbulent Heat Transfer in Plane Impinging Jet , 2004 .

[112]  P. Moin,et al.  A dynamic subgrid‐scale model for compressible turbulence and scalar transport , 1991 .

[113]  M. Popovac,et al.  Large-eddy simulations of flow over a jet-impinged wall-mounted cube in a cross stream , 2007 .

[114]  Hiroshi Tamura,et al.  Propellant injection in a liquid oxygen/gaseous hydrogen rocket engine , 1996 .

[115]  Jae Hwa Lee,et al.  Direct numerical simulations of fully developed turbulent pipe flows for Reτ = 180, 544 and 934 , 2013 .

[116]  Qiusheng Li,et al.  A new dynamic one‐equation subgrid‐scale model for large eddy simulations , 2009 .

[117]  L. Brizzi,et al.  Experimental investigation of the flow and heat transfer of an impinging jet under acoustic excitation , 2011 .

[118]  J. Yoo,et al.  Direct numerical simulation of turbulent supercritical flows with heat transfer , 2005 .

[119]  Darina B. Murray,et al.  Fluctuating fluid flow and heat transfer of an obliquely impinging air jet , 2008 .

[120]  M. Ihme,et al.  Seven questions about supercritical fluids - towards a new fluid state diagram , 2017 .

[121]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[122]  Seungjoon Baik,et al.  Review of supercritical CO2 power cycle technology and current status of research and development , 2015 .

[123]  Florent Duchaine,et al.  Investigation of the concave curvature effect for an impinging jet flow , 2017 .

[124]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[125]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[126]  Thomas J. R. Hughes,et al.  Sensitivity of the scale partition for variational multiscale large-eddy simulation of channel flow , 2004 .

[127]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[128]  H. Deniau,et al.  Large-Eddy simulation of an impinging heated jet for a small nozzle-to-plate distance and high Reynolds number , 2017 .

[129]  D. Bergstrom,et al.  A General Dynamic Linear Tensor-Diffusivity Subgrid-Scale Heat Flux Model for Large-Eddy Simulation of Turbulent Thermal Flows , 2007 .

[130]  Yang Moon Koh,et al.  Turbulent Flow near a Wall , 1991 .

[131]  A. Mujumdar,et al.  Experimental study of formation and development of coherent vortical structures in pulsed turbulent impinging jet , 2016 .

[132]  Khalid M. Saqr,et al.  CFD modelling of entropy generation in turbulent pipe flow: Effects of temperature difference and swirl intensity , 2016 .

[133]  S. Kim,et al.  The effect of inclination on impinging jets at small nozzle-to-plate spacing , 2012 .

[134]  D. Feakins,et al.  The thermodynamics of solutions , 1989 .

[135]  F. Beaubert,et al.  Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers , 2003 .

[136]  M. Habiballah,et al.  EXPERIMENTAL STUDIES OF HIGH-PRESSURE CRYOGENIC FLAMES ON THE MASCOTTE FACILITY , 2006 .

[137]  F. Nicoud,et al.  Using singular values to build a subgrid-scale model for large eddy simulations , 2011 .

[138]  A. Townsend,et al.  Small-scale variation of convected quantities like temperature in turbulent fluid Part 2. The case of large conductivity , 1959, Journal of Fluid Mechanics.

[139]  Hakan F. Oztop,et al.  A review on entropy generation in natural and mixed convection heat transfer for energy systems , 2012 .

[140]  C. Beguier,et al.  Ratio of scalar and velocity dissipation time scales in shear flow turbulence , 1978 .

[141]  J. Spurk,et al.  Strömungslehre : Einführung in die Theorie der Strömungen , 2019 .

[142]  Christopher J. Roy,et al.  Verification and Validation in Scientific Computing , 2010 .

[143]  J. Yoo,et al.  Direct numerical simulation of heated CO2 flows at supercritical pressure in a vertical annulus at Re=8900 , 2008 .

[144]  Thierry Poinsot,et al.  Large Eddy Simulations of gaseous flames in gas turbine combustion chambers , 2012 .

[145]  L. Brizzi,et al.  Evidence of flow vortex signatures on wall fluctuating temperature using unsteady infrared thermography for an acoustically forced impinging jet , 2014 .

[146]  Stability of Pressure-Correction Algorithms for Low-Speed Reacting and Non-Reacting Flow Simulations , 2009 .

[147]  Javad Abolfazli Esfahani,et al.  Effect of non-uniform heating on entropy generation for the laminar developing pipe flow of a high Prandtl number fluid , 2010 .

[148]  Israel J Wygnanski,et al.  Some measurements in the self-preserving jet , 1969, Journal of Fluid Mechanics.

[149]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[150]  A. Bejan Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes , 1995 .

[151]  E. Lamballais,et al.  Direct numerical simulation of a turbulent jet impinging on a heated wall , 2015, Journal of Fluid Mechanics.

[152]  C. Bogey,et al.  Large-eddy simulation of supersonic planar jets impinging on a flat plate at an angle of 60 to 90 degrees , 2015 .

[153]  Timothy G. Trucano,et al.  Verification and validation benchmarks , 2008 .

[154]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[155]  A. Obukhov,et al.  Structure of Temperature Field in Turbulent Flow , 1970 .

[156]  Heinz Herwig,et al.  Diffuser and Nozzle Design Optimization by Entropy Generation Minimization , 2011, Entropy.

[157]  Mohammad Reza H. Sheikhi,et al.  Progress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation , 2014, Entropy.

[158]  Bahram Moshfegh,et al.  Large-eddy simulation of an impinging jet in a cross-flow on a heated wall-mounted cube , 2009 .

[159]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[160]  Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet , 2009 .

[161]  Michael Oschwald,et al.  INJECTION OF FLUIDS INTO SUPERCRITICAL ENVIRONMENTS , 2006 .

[162]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[163]  K Kiełczewski,et al.  Numerical study of the flow structure and heat transfer in rotating cavity with and without jet , 2013 .

[164]  Luc Vervisch,et al.  A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet , 2009 .

[165]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[166]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[167]  N. Lior,et al.  Impingement Heat Transfer: Correlations and Numerical Modeling , 2005 .

[168]  Katja Bachmeier,et al.  Numerical Heat Transfer And Fluid Flow , 2016 .

[169]  Sunil Chandel,et al.  Influence of jet temperature and nozzle shape on the heat transfer distribution between a smooth plate and impinging air jets , 2016 .

[170]  Akira Yoshizawa,et al.  A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows , 1985 .

[171]  Hüseyin Yapıcı,et al.  Numerical calculation of local entropy generation in a methane–air burner , 2005 .

[172]  Shin-ichi Satake,et al.  Direct numerical simulation of an impinging jet into parallel disks , 1998 .

[173]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[174]  D. Bergstrom,et al.  New dynamic subgrid-scale heat flux models for large-eddy simulation of thermal convection based on the general gradient diffusion hypothesis , 2008, Journal of Fluid Mechanics.

[175]  A. Gorobets,et al.  DNS and RANS modelling of a turbulent plane impinging jet , 2012 .

[176]  Bruce Chehroudi,et al.  Recent Experimental Efforts on High-Pressure Supercritical Injection for Liquid Rockets and Their Implications , 2012 .

[177]  Richard J Goldstein,et al.  Heat transfer from a flat surface to an oblique impinging jet , 1988 .

[178]  Sébastien Candel,et al.  Experimental investigation of shear coaxial cryogenic jet flames , 1998 .

[179]  B. Sundén,et al.  Entropy generation analysis of fully-developed turbulent heat transfer flow in inward helically corrugated tubes , 2018, Numerical Heat Transfer, Part A: Applications.

[180]  A. Burcat,et al.  Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables). , 2005 .

[181]  D. Lenschow,et al.  How long is long enough when measuring fluxes and other turbulence statistics , 1994 .

[182]  Yongmann M. Chung,et al.  Large-eddy simulations of a turbulent jet impinging on a vibrating heated wall , 2017 .

[183]  Douglas G Talley,et al.  Visual characteristics and initial growth rates of round cryogenic jets at subcritical and supercritical pressures , 2002 .

[184]  G. E. Mase,et al.  Continuum Mechanics for Engineers , 1991 .

[185]  J. Keenan Availability and irreversibility in thermodynamics , 1951 .

[186]  Thierry Poinsot,et al.  Numerical Benchmark for High-Reynolds-Number Supercritical Flows with Large Density Gradients , 2016 .

[187]  K. Kobe The properties of gases and liquids , 1959 .

[188]  J. Ferziger,et al.  Improved turbulence models based on large eddy simulation of homogeneous, incompressible, turbulent flows , 1983 .

[189]  Johannes Janicka,et al.  Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms , 2018 .

[190]  Kai H. Luo,et al.  Unsteady heat transfer analysis of an impinging jet , 2002 .

[191]  Ghislain Lartigue,et al.  Large-eddy simulation of supercritical fluid injection , 2013 .

[192]  Johannes Janicka,et al.  Large Eddy Simulation of Turbulent Combustion Systems , 2005 .

[193]  Ismail Celik,et al.  Index of resolution quality for large eddy simulations , 2005 .

[194]  B. Geurts,et al.  Database-analysis of errors in Large-Eddy Simulation , 2003 .

[195]  F. Duchaine,et al.  Secondary peak in the Nusselt number distribution of impinging jet flows: A phenomenological analysis , 2016 .

[196]  Francesco Creta,et al.  Mixing under transcritical conditions: An a-priori study using direct numerical simulation , 2017 .

[197]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[198]  H. Martin Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces , 1977 .

[199]  Shia-Hui Peng,et al.  On a Subgrid-Scale Heat Flux Model for Large Eddy Simulation of Turbulent Thermal Flow , 2002 .

[200]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[201]  Parviz Moin,et al.  Grid-independent large-eddy simulation using explicit filtering , 2008 .

[202]  W. Prager,et al.  Einführung in die Kontinuumsmechanik , 1961 .

[203]  Ž. Knez,et al.  Industrial applications of supercritical fluids: A review , 2014 .

[204]  J. Telaar,et al.  Raman Measurements of Cryogenic Injection at Supercritical Pressure , 2003 .

[205]  M. Y. Hussaini On Large-Eddy Simulation of Compressible Flows , 1998 .

[206]  A. Sadiki,et al.  Mixing Analysis and Optimization in Jet Mixer Systems by Means of Large Eddy Simulation , 2010 .

[207]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[208]  Adrian Bejan,et al.  Method of entropy generation minimization, or modeling and optimization based on combined heat transfer and thermodynamics , 1996 .

[209]  Parviz Moin,et al.  ADVANCES IN LARGE EDDY SIMULATION METHODOLOGY FOR COMPLEX FLOWS , 2002, Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena.

[210]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[211]  R. Gould,et al.  Towards better uncertainty estimates for turbulence statistics , 1996 .

[212]  M. Oschwald,et al.  INVESTIGATION OF COAXIAL LN2/GH2-INJECTION AT SUPERCRITICAL PRESSURE BY SPONTANEOUS RAMAN SCATTERING , 1999 .

[213]  S. V. Prabhu,et al.  Influence of the shape of the orifice on the local heat transfer distribution between smooth flat surface and impinging incompressible air jet , 2016 .

[214]  B. Cuenot,et al.  Stabilization mechanisms of a supercritical hydrogen / oxygen flame By , 2012 .

[215]  K. Lilly The representation of small-scale turbulence in numerical simulation experiments , 1966 .

[216]  D. Reichenberg New simplified methods for the estimation of the viscosities of gas mixtures at moderate pressures , 1977 .

[217]  Bassam A. Younis,et al.  A rational model for the turbulent scalar fluxes , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[218]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[219]  M. Fénot,et al.  The effect of nozzle geometry on local convective heat transfer to unconfined impinging air jets , 2016 .

[220]  M. K. Drost,et al.  Numerical predictions of local entropy generation in an impinging jet , 1989 .

[221]  Bje Bert Blocken,et al.  Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building : validation and solution verification , 2013 .

[222]  Bekir Sami Yilbas,et al.  Local entropy generation in an impinging jet: minimum entropy concept evaluating various turbulence models , 2001 .

[223]  P. R. Voke,et al.  Numerical study of heat transfer from an impinging jet , 1998 .

[224]  K. Tsujimoto,et al.  DNS analysis of multiple impinging jets , 2014 .

[225]  Jungho Lee,et al.  The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement , 2000 .

[226]  Markus Klein,et al.  An Attempt to Assess the Quality of Large Eddy Simulations in the Context of Implicit Filtering , 2005 .

[227]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[228]  Christophe Duwig,et al.  On the implementation of low-dissipative Runge–Kutta projection methods for time dependent flows using OpenFOAM® , 2014 .

[229]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[230]  J. Lienhard,et al.  Wall Roughness Effects on Stagnation-Point Heat Transfer Beneath an Impinging Liquid Jet , 1994 .

[231]  Noam Lior,et al.  Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling , 2006 .

[232]  Sébastien Candel,et al.  Flame stabilization in high pressure LOx/GH2 and GCH4 combustion , 2007 .

[233]  J. Deardorff A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers , 1970, Journal of Fluid Mechanics.