Estimating and assessing second-order constructs using PLS-PM: the case of composites of composites

Schuberth, F., Rademaker, M. E., & Henseler, J. (2020). Estimating and assessing second-order constructs using PLS-PM: the case of composites of composites. Industrial Management and Data Systems. [Advanced online publication on 3 September 2020]. Doi: https://doi.org/10.1108/IMDS-12-2019-0642

[1]  Jan-Bernd Lohmöller,et al.  Latent Variable Path Modeling with Partial Least Squares , 1989 .

[2]  Theo K. Dijkstra,et al.  On the extraction of weights from pairwise comparison matrices , 2013, Central Eur. J. Oper. Res..

[3]  P. Bentler,et al.  Cutoff criteria for fit indexes in covariance structure analysis : Conventional criteria versus new alternatives , 1999 .

[4]  Jose Benitez-Amado,et al.  IT-enabled knowledge ambidexterity and innovation performance in small U.S. firms: The moderator role of social media capability , 2018, Inf. Manag..

[5]  Florian Schuberth,et al.  Using confirmatory composite analysis to assess emergent variables in business research , 2020, Journal of Business Research.

[6]  S. Mulaik,et al.  EVALUATION OF GOODNESS-OF-FIT INDICES FOR STRUCTURAL EQUATION MODELS , 1989 .

[7]  Detmar W. Straub,et al.  Common Beliefs and Reality About PLS , 2014 .

[8]  Sang M. Lee,et al.  Green supply chain management and organizational performance , 2012, Ind. Manag. Data Syst..

[9]  Marko Sarstedt,et al.  How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM , 2019, Australasian Marketing Journal.

[10]  Andreas Ritter,et al.  Structural Equations With Latent Variables , 2016 .

[11]  Wynne W. Chin,et al.  On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution , 1995 .

[12]  K. Law,et al.  Multidimensional constructs in structural equation analysis: An illustration using the job perception and job satisfaction constructs , 1999 .

[13]  Jason Bennett Thatcher,et al.  Conceptualizing models using multidimensional constructs: a review and guidelines for their use , 2012, Eur. J. Inf. Syst..

[14]  Elena Karahanna,et al.  Time Flies When You're Having Fun: Cognitive Absorption and Beliefs About Information Technology Usage , 2000, MIS Q..

[15]  Meng U. Taing,et al.  Recommendations for improving the construct clarity of higher-order multidimensional constructs , 2012 .

[16]  J. Henseler Bridging Design and Behavioral Research With Variance-Based Structural Equation Modeling , 2017 .

[17]  Paulo Duarte,et al.  Methods for modelling reflective-formative second order constructs in PLS , 2018, Journal of Hospitality and Tourism Technology.

[18]  Ainin Sulaiman,et al.  Understanding impulse purchase in Facebook commerce: does Big Five matter? , 2017, Internet Res..

[19]  Fujun Lai,et al.  Information orientation and its impacts on information asymmetry and e-business adoption: Evidence from China's international trading industry , 2006, Ind. Manag. Data Syst..

[20]  P. Bentler,et al.  Comparative fit indexes in structural models. , 1990, Psychological bulletin.

[21]  Jörg Henseler,et al.  Modeling Reflective Higher-Order Constructs using Three Approaches with PLS Path Modeling: A Monte Carlo Comparison , 2007 .

[22]  Jacob Cohen,et al.  Problems in the Measurement of Latent Variables in Structural Equations Causal Models , 1990 .

[23]  Geoffrey S. Hubona,et al.  Using PLS path modeling in new technology research: updated guidelines , 2016, Ind. Manag. Data Syst..

[24]  Edward E. Rigdon,et al.  Comment on “Improper use of endogenous formative variables” , 2014 .

[25]  Laura Guitart Tarrés,et al.  Impact of human resources on supply chain management and performance , 2015, Ind. Manag. Data Syst..

[26]  K. Jöreskog A General Method for Estimating a Linear Structural Equation System. , 1970 .

[27]  Thurasamy Ramayah,et al.  A comparison of five reflective–formative estimation approaches: reconsideration and recommendations for tourism research , 2018, Quality & Quantity.

[28]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[29]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[30]  James H. Steiger,et al.  Understanding the limitations of global fit assessment in structural equation modeling , 2007 .

[31]  Alain Yee-Loong Chong,et al.  An updated and expanded assessment of PLS-SEM in information systems research , 2017, Ind. Manag. Data Syst..

[32]  Shawn Bauldry,et al.  Three Cs in measurement models: causal indicators, composite indicators, and covariates. , 2011, Psychological methods.

[33]  Galit Shmueli,et al.  To Explain or To Predict? , 2010, 1101.0891.

[34]  Florian Schuberth,et al.  How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research , 2020, Inf. Manag..

[35]  A. Basilevsky,et al.  Factor Analysis as a Statistical Method. , 1964 .

[36]  Dianne M. Finkelstein,et al.  A Beginner's Guide to Structural Equation Modeling , 2005, Technometrics.

[37]  Edward E. Rigdon,et al.  Rethinking Partial Least Squares Path Modeling: In Praise of Simple Methods , 2012 .

[38]  Michel Tenenhaus,et al.  PLS path modeling , 2005, Comput. Stat. Data Anal..

[39]  Jörg Henseler,et al.  Confirmatory Composite Analysis , 2018, Front. Psychol..

[40]  Jacob Cohen,et al.  A power primer. , 1992, Psychological bulletin.

[41]  Jacob Cohen Statistical Power Analysis for the Behavioral Sciences , 1969, The SAGE Encyclopedia of Research Design.

[42]  Huseyin Uzunboylu,et al.  The life satisfaction of teachers at work place, research of structural equation modelling regarding general and organized cynicism , 2018 .

[43]  Gaby Odekerken-Schröder,et al.  Using PLS path modeling for assessing hierarchial construct models: guidelines and impirical illustration , 2009 .

[44]  Jörg Henseler,et al.  Consistent and asymptotically normal PLS estimators for linear structural equations , 2014 .

[45]  Florian Schuberth,et al.  Investigating the effects of tourist engagement on satisfaction and loyalty , 2019, The Service Industries Journal.

[46]  Byunghak Leem,et al.  The effect of the supply chain social capital , 2013, Ind. Manag. Data Syst..

[47]  Pratyush Nidhi Sharma,et al.  Prediction: Coveted, Yet Forsaken? Introducing a Cross-Validated Predictive Ability Test in Partial Least Squares Path Modeling , 2020, Decis. Sci..

[48]  Florian Schuberth,et al.  cSEM: Composite-Based Structural Equation Modeling , 2020 .

[49]  P. Barrett Structural equation modelling : Adjudging model fit , 2007 .

[50]  T Raykov,et al.  On Structural Equation Model Equivalence. , 1999, Multivariate behavioral research.

[51]  W. G. Brown,et al.  Multicollinearity problems and ridge regression in sociological models , 1975 .

[52]  S. Ross,et al.  An exploration of motives in sport video gaming , 2006 .

[53]  Bradley Wilson,et al.  Using PLS to Investigate Interaction Effects Between Higher Order Branding Constructs , 2010 .

[54]  Joe F. Hair,et al.  Assessing measurement model quality in PLS-SEM using confirmatory composite analysis , 2020 .

[55]  K. Jöreskog A general approach to confirmatory maximum likelihood factor analysis , 1969 .

[56]  F. Bookstein,et al.  Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory , 1982 .

[57]  Susana Pérez López,et al.  Information Technology Competency, Knowledge Processes and Firm Performance , 2012, Ind. Manag. Data Syst..

[58]  Jose Benitez-Amado,et al.  How information technology influences opportunity exploration and exploitation firm's capabilities , 2018, Inf. Manag..

[59]  Wen-Lung Shiau,et al.  Methodological research on partial least squares structural equation modeling (PLS-SEM) , 2019, Internet Res..

[60]  J. Edwards Multidimensional Constructs in Organizational Behavior Research: An Integrative Analytical Framework , 2001 .

[61]  Joseph F. Hair,et al.  When to use and how to report the results of PLS-SEM , 2019, European Business Review.

[62]  Jörg Henseler,et al.  Investigating the moderating role of fit on sports sponsorship and brand equity. , 2007 .

[63]  Taeke Klaas Dijkstra Latent variables in linear stochastic models , 1981 .

[64]  Martin Wetzels,et al.  Hierarchical latent variable models in PLS-SEM: guidelines for using reflective-formative type models , 2012 .

[65]  Stanley A. Mulaik,et al.  First Order or Higher Order General Factor , 1997 .

[66]  R. Stine,et al.  Bootstrapping Goodness-of-Fit Measures in Structural Equation Models , 1992 .

[67]  Li-Chun Hsu,et al.  Investigating community members' purchase intention on Facebook fan page: From a dualistic perspective of trust relationships , 2017, Ind. Manag. Data Syst..

[68]  Kenneth W. Green,et al.  The impact of JIT-II-selling on organizational performance , 2007, Ind. Manag. Data Syst..

[69]  Scott E. Maxwell,et al.  Multivariate group comparisons of variable systems: MANOVA and structural equation modeling. , 1993 .

[70]  Theo K. Dijkstra,et al.  A Perfect Match Between a Model and a Mode , 2017 .

[71]  Taehun Kim,et al.  The effect of knowledge on system integration project performance , 2008, Ind. Manag. Data Syst..

[72]  D. Straub,et al.  Editor's comments: a critical look at the use of PLS-SEM in MIS quarterly , 2012 .

[73]  P. Bentler,et al.  Significance Tests and Goodness of Fit in the Analysis of Covariance Structures , 1980 .

[74]  Edward E. Rigdon,et al.  Choosing PLS path modeling as analytical method in European management research: A realist perspective , 2016 .

[75]  Jörg Henseler,et al.  Testing Moderating Effects in PLS Path Models. An Illustration of Available Procedures , 2005 .

[76]  Pratyush Nidhi Sharma,et al.  Model selection uncertainty and multimodel inference in partial least squares structural equation modeling (PLS-SEM) , 2020 .

[77]  K. Yuan Fit Indices Versus Test Statistics , 2005, Multivariate behavioral research.

[78]  Jörg Henseler,et al.  Estimating hierarchical constructs using consistent partial least squares: The case of second-order composites of common factors , 2017, Ind. Manag. Data Syst..

[79]  Herman Wold,et al.  Soft modelling: The Basic Design and Some Extensions , 1982 .

[80]  J. Henseler Partial least squares path modeling: Quo vadis? , 2018, Quality & Quantity.

[81]  Nastaran Hajiheydari,et al.  Mobile application user behavior in the developing countries: A survey in Iran , 2018, Inf. Syst..

[82]  Rex B. Kline,et al.  Principles and Practice of Structural Equation Modeling , 1998 .

[83]  Nick Lee,et al.  Improper use of endogenous formative variables , 2013 .

[84]  Marko Sarstedt,et al.  Rethinking some of the rethinking of partial least squares , 2019, European Journal of Marketing.

[85]  Pratyush Nidhi Sharma,et al.  PLS-Based Model Selection: The Role of Alternative Explanations in Information Systems Research , 2019, J. Assoc. Inf. Syst..

[86]  R. Beran,et al.  Bootstrap Tests and Confidence Regions for Functions of a Covariance Matrix , 1985 .

[87]  Yu Zhou,et al.  Organizational use of the internet: Scale development and validation , 2005, Internet Res..

[88]  Ainin Sulaiman,et al.  Factors influencing the use of social media by SMEs and its performance outcomes , 2015, Ind. Manag. Data Syst..

[89]  T. Dijkstra,et al.  Consistent Partial Least Squares for Nonlinear Structural Equation Models , 2013, Psychometrika.

[90]  Joel Waldfogel,et al.  Introduction , 2010, Inf. Econ. Policy.