On the conservation laws of Derrida-Lebowitz-Speer-Spohn equation

In this study, the nonlocal conservation theorem and multiplier approach are performed on the 1 + 1 dimensional Derrida–Lebowitz–Speer–Spohn (DLSS) equation which arises in quantum semi conductor theory. We obtain local conservation laws by using the both methods. Furthermore by utilizing the relationship between conservation laws and Lie point symmetries, the DLSS equation is reduced to third order ordinary differential equation.

[1]  K. R. Adem,et al.  Exact Solutions and Conservation Laws of a (2+1)-Dimensional Nonlinear KP-BBM Equation , 2013 .

[2]  A. Sjöberg,et al.  On double reductions from symmetries and conservation laws , 2009 .

[3]  Rahila Naz,et al.  Conservation laws for some compacton equations using the multiplier approach , 2012, Appl. Math. Lett..

[4]  J. Ramírez,et al.  Some new solutions for the Derrida-Lebowitz-Speer-Spohn equation , 2013, Commun. Nonlinear Sci. Numer. Simul..

[5]  Lebowitz,et al.  Fluctuations of a stationary nonequilibrium interface. , 1991, Physical review letters.

[6]  Fazal M. Mahomed,et al.  Noether-Type Symmetries and Conservation Laws Via Partial Lagrangians , 2006 .

[7]  Ashfaque H. Bokhari,et al.  Generalization of the double reduction theory , 2009, 0909.4564.

[8]  Fazal M. Mahomed,et al.  Relationship between Symmetries andConservation Laws , 2000 .

[9]  D. P. Mason,et al.  Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics , 2008, Appl. Math. Comput..

[10]  A Review on Results for the Derrida-Lebowitz-Speer-Spohn Equation , 2008 .

[11]  Alexei F. Cheviakov,et al.  GeM software package for computation of symmetries and conservation laws of differential equations , 2007, Comput. Phys. Commun..

[12]  Rehana Naz,et al.  Conservation laws for a complexly coupled KdV system, coupled Burgers’ system and Drinfeld-Sokolov-Wilson system via multiplier approach , 2010 .

[13]  Nail H. Ibragimov,et al.  Nonlinear self-adjointness and conservation laws , 2011, 1107.4877.

[14]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[15]  N. Ibragimov A new conservation theorem , 2007 .

[16]  Chaudry Masood Khalique,et al.  Conservation laws of KdV equation with time dependent coefficients , 2011 .

[17]  Nail H. Ibragimov,et al.  Conservation laws and exact solutions for nonlinear diffusion in anisotropic media , 2013, Commun. Nonlinear Sci. Numer. Simul..

[18]  H. Steudel Über die Zuordnung zwischen lnvarianzeigenschaften und Erhaltungssätzen , 1962 .

[19]  E. Yaşar,et al.  Conservation laws for one-layer shallow water wave systems , 2010 .

[20]  C. M. Khalique,et al.  Symmetry reductions, exact solutions and conservation laws of a new coupled KdV system , 2012 .