Cortical circuits for the control of attention

How are some thoughts favored over others? A wealth of data at the level of single neurons has yielded candidate brain areas and mechanisms for our best-understood model: visual attention. Recent work has naturally evolved toward efforts at a more integrative, network, understanding. It suggests that focusing attention arises from interactions between widespread cortical and subcortical networks that may be regulated via their rhythmic synchronization.

[1]  Bijan Pesaran,et al.  Free choice activates a decision circuit between frontal and parietal cortex , 2008, Nature.

[2]  Earl K. Miller,et al.  Shifting the Spotlight of Attention: Evidence for Discrete Computations in Cognition , 2010, Front. Hum. Neurosci..

[3]  Roger D. Traub,et al.  Rates and Rhythms: A Synergistic View of Frequency and Temporal Coding in Neuronal Networks , 2012, Neuron.

[4]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[5]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[6]  T. Sejnowski,et al.  Impact of Correlated Synaptic Input on Output Firing Rate and Variability in Simple Neuronal Models , 2000, The Journal of Neuroscience.

[7]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[8]  Maureen A. Hagan,et al.  Only Coherent Spiking in Posterior Parietal Cortex Coordinates Looking and Reaching , 2012, Neuron.

[9]  T. Sejnowski,et al.  Information transfer in entrained cortical neurons. , 2002, Network.

[10]  Robert M. McPeek,et al.  Deficits in saccade target selection after inactivation of superior colliculus , 2004, Nature Neuroscience.

[11]  W. Vanduffel,et al.  Functional Heterogeneity of Macaque Lateral Intraparietal Neurons , 2011, The Journal of Neuroscience.

[12]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[13]  R. Desimone,et al.  Laminar differences in gamma and alpha coherence in the ventral stream , 2011, Proceedings of the National Academy of Sciences.

[14]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[15]  James W Bisley,et al.  Neural correlates of attention and distractibility in the lateral intraparietal area. , 2006, Journal of neurophysiology.

[16]  E. Miller,et al.  Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations , 2009, Neuron.

[17]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[18]  Stephen J. Gotts,et al.  Cell-Type-Specific Synchronization of Neural Activity in FEF with V4 during Attention , 2012, Neuron.

[19]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[20]  M. Goldberg,et al.  Activity in the Lateral Intraparietal Area Predicts the Goal and Latency of Saccades in a Free-Viewing Visual Search Task , 2006, The Journal of Neuroscience.

[21]  E. Knudsen,et al.  Control from below: the role of a midbrain network in spatial attention , 2011, The European journal of neuroscience.

[22]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[23]  J. Bisley,et al.  A pure salience response in posterior parietal cortex. , 2011, Cerebral cortex.

[24]  Markus Siegel,et al.  Phase-dependent neuronal coding of objects in short-term memory , 2009, Proceedings of the National Academy of Sciences.

[25]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[26]  R. Desimone,et al.  A backward progression of attentional effects in the ventral stream , 2009, Proceedings of the National Academy of Sciences.

[27]  Eric I. Knudsen,et al.  Gamma Oscillations Are Generated Locally in an Attention-Related Midbrain Network , 2012, Neuron.

[28]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[29]  P. Fries,et al.  Attention Samples Stimuli Rhythmically , 2012, Current Biology.

[30]  Henry Kennedy,et al.  Pathways of Attention: Synaptic Relationships of Frontal Eye Field to V4, Lateral Intraparietal Cortex, and Area 46 in Macaque Monkey , 2011, The Journal of Neuroscience.

[31]  Edward L. Keller,et al.  Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift , 2012, PloS one.

[32]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[33]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[34]  Wilsaan M. Joiner,et al.  Suppressive Surrounds of Receptive Fields In Monkey Frontal Eye Field , 2012, The Journal of Neuroscience.

[35]  B Suresh Krishna,et al.  Surround Suppression Sharpens the Priority Map in the Lateral Intraparietal Area , 2022 .

[36]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[37]  Robert Desimone,et al.  Parallel and Serial Neural Mechanisms for Visual Search in Macaque Area V4 , 2005, Science.

[38]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[39]  Y. Saalmann,et al.  Cognitive and Perceptual Functions of the Visual Thalamus , 2011, Neuron.

[40]  J. Bisley,et al.  Microstimulation of posterior parietal cortex biases the selection of eye movement goals during search. , 2010, Journal of neurophysiology.

[41]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[42]  R. Knight,et al.  Role of frontal and parietal cortices in the control of bottom-up and top-down attention in humans , 2010, Brain Research.

[43]  N. P. Bichot,et al.  Dissociation of visual discrimination from saccade programming in macaque frontal eye field. , 1997, Journal of neurophysiology.

[44]  Robert Desimone,et al.  Top–Down Attentional Deficits in Macaques with Lesions of Lateral Prefrontal Cortex , 2007, The Journal of Neuroscience.

[45]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[46]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[47]  Y. Saalmann,et al.  The Pulvinar Regulates Information Transmission Between Cortical Areas Based on Attention Demands , 2012, Science.

[48]  W. Singer,et al.  Abnormal neural oscillations and synchrony in schizophrenia , 2010, Nature Reviews Neuroscience.

[49]  Peter Janssen,et al.  Frontal eye field microstimulation induces task-dependent gamma oscillations in the lateral intraparietal area. , 2012, Journal of neurophysiology.

[50]  P. König,et al.  A Functional Gamma-Band Defined by Stimulus-Dependent Synchronization in Area 18 of Awake Behaving Cats , 2003, The Journal of Neuroscience.