Three-dimensional simulation of fretting crack nucleation and growth

Abstract Fretting nucleation models and three-dimensional finite element analyses are used to compute the fretting fatigue life for metallic components. The models predict crack nucleation cycles and location(s). Discrete crack growth simulations provide stress intensity factor histories, with multiple, non-planar, three-dimensional cracks possible. The histories are input into crack growth rate model(s) to compute propagation cycles. The sum of fretting nucleation plus propagation cycles is the total life. Experimental fretting data, including crack nucleation location and cycles, and crack growth trajectory and propagation cycles, are used to validate the approach. Predictions for a realistic turbine blade/disk are comparable to field observations.

[1]  S. Mall,et al.  A shear stress-based parameter for fretting fatigue crack initiation , 2001 .

[2]  A finite element analysis of fretting fatigue crack growth behavior in Ti–6Al–4V , 2008 .

[3]  Michael P. Enright,et al.  Probabilistic Fretting Fatigue Assessment of Aircraft Engine Disks , 2010 .

[4]  Subra Suresh,et al.  Aspects of equivalence between contact mechanics and fracture mechanics: theoretical connections and a life-prediction methodology for fretting-fatigue , 1998 .

[5]  D. Hills,et al.  Prediction of fretting crack propagation based on a short crack methodology , 2008 .

[6]  P. C. Paris,et al.  A Critical Analysis of Crack Propagation Laws , 1963 .

[7]  Richard A. Holmes,et al.  Demonstration of advanced life-prediction and state-awareness technologies necessary for prognosis of turbine engine disks , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  Kaushik A. Iyer,et al.  Analyses of Contact Pressure and Stress Amplitude Effects on Fretting Fatigue Life , 2001 .

[9]  Patrick J. Golden Development of a Dovetail Fretting Fatigue Fixture for Turbine Engine Materials (Preprint) , 2006 .

[10]  Henry Proudhon,et al.  Finite element analysis of fretting crack propagation , 2011, 1102.4692.

[11]  Anders Ekberg,et al.  Fretting fatigue of railway axles—a Review of predictive methods and an outline of a finite element model , 2004 .

[12]  S. Faanes,et al.  Inclined cracks in fretting fatigue , 1995 .

[13]  Habibou Maitournam,et al.  Modelling Attempts to Predict Fretting-Fatigue Life on Turbine Components , 2004 .

[14]  David L. Davidson,et al.  A fracture mechanics approach to high cycle fretting fatigue based on the worst case fret concept – I. Model development , 2001 .

[15]  Patrick J. Golden,et al.  Fracture mechanics based fretting fatigue life predictions in Ti–6Al–4V , 2004 .

[16]  C. Navarro,et al.  A procedure for estimating the total life in fretting fatigue , 2003 .

[17]  C. Ruiz,et al.  An investigation of fatigue and fretting in a dovetail joint , 1984 .

[18]  D. Hills,et al.  On the mechanics of fretting fatigue , 1988 .

[19]  D. Luo,et al.  Selecting solid lubricant coatings under fretting conditions , 2010 .

[20]  T. Farris,et al.  Mechanics of fretting fatigue crack formation , 1995 .

[21]  Eugenio Giner,et al.  Fretting fatigue life prediction using the extended finite element method , 2011 .

[22]  Marie-Christine Baietto,et al.  A multi-model X-FEM strategy dedicated to frictional crack growth under cyclic fretting fatigue loadings , 2010 .

[23]  Paul A. Wawrzynek,et al.  Advances in Simulation of Arbitrary 3D Crack Growth using FRANC3D NG , 2012 .

[24]  Michele Ciavarella,et al.  A ‘crack‐like’ notch analogue for a safe‐life fretting fatigue design methodology , 2003 .

[25]  M. Veilleux Geometrically Explicit Finite Element Modeling Of Aa7075-T651 Microstructure With Fatigue Cracks , 2011 .

[26]  Patrick J. Golden,et al.  A fracture mechanics life prediction methodology applied to dovetail fretting , 2006 .

[27]  Krishnakumar Shankar,et al.  Fatigue behaviour of aluminium alloy 7075 bolted joints treated with oily film corrosion compounds , 2002 .

[28]  S. Fouvry,et al.  Introduction of a fretting-fatigue mapping concept: Development of a dual crack nucleation – crack propagation approach to formalize fretting-fatigue damage , 2009 .

[29]  T. Farris,et al.  Life estimation of Ti-6Al-4V specimens subjected to fretting fatigue and effect of surface treatments , 2009 .

[30]  Takashi Watanabe,et al.  Simulation of fretting-fatigue life by using stress-singularity parameters and fracture mechanics , 2003 .

[31]  Guillermo E. Morales-Espejel,et al.  3D two scale X-FEM crack model with interfacial frictional contact: Application to fretting fatigue , 2010 .

[32]  David Nowell,et al.  The use of multiaxial fatigue models to predict fretting fatigue life of components subjected to different contact stress fields , 2004 .

[33]  D. McDowell,et al.  Microstructure-sensitive modeling: Application to fretting contacts , 2009 .

[34]  Ciro Santus,et al.  Fretting fatigue of aluminum alloy in contact with steel in oil drill pipe connections, modeling to interpret test results , 2008 .

[35]  Marco Boniardi,et al.  Failure analysis of a third stage gas turbine blade , 2011 .

[36]  Jacob Hochhalter,et al.  Finite Element Simulations Of Fatigue Crack Stages In Aa 7075-T651 Microstructure , 2010 .

[37]  Sean B. Leen,et al.  A simplified fretting test methodology for complex shaft couplings , 2005 .

[38]  Sean B. Leen,et al.  Fretting fatigue predictions in a complex coupling , 2007 .

[39]  Christopher D Lykins An investigation of fretting fatigue crack initiation behavior of the titanium alloy Ti-6Al-4V , 1999 .

[40]  A. F. Grandt,et al.  Application of a total life prediction model for fretting fatigue in Ti–6Al–4V , 2007 .

[41]  Shankar Mall,et al.  An evaluation of parameters for predicting fretting fatigue crack initiation , 2000 .

[42]  F. Sidoroff,et al.  Identification of the characteristic length scale for fatigue cracking in fretting contacts , 1998 .

[43]  Michele Ciavarella,et al.  A review of analytical aspects of fretting fatigue, with extension to damage parameters, and application to dovetail joints , 2001 .

[44]  Tribikram Kundu,et al.  Health Monitoring and Smart Nondestructive Evaluation of Structural and Biological Systems IV , 2005 .

[45]  K. W. Barlow,et al.  Fatigue crack propagation simulation in an aircraft engine fan blade attachment , 2005 .