Roll up nanowire battery from silicon chips

Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li+ gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.

[1]  Xiaolin Zheng,et al.  Fabrication of flexible and vertical silicon nanowire electronics. , 2012, Nano letters.

[2]  Paul V Braun,et al.  Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. , 2012, Nano letters.

[3]  Michael F Toney,et al.  In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. , 2012, ACS nano.

[4]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[5]  Justin T. Harris,et al.  Copper-Coated Amorphous Silicon Particles as an Anode Material for Lithium-Ion Batteries , 2012 .

[6]  D. Mitlin,et al.  Silicon nanowire core aluminum shell coaxial nanocomposites for lithium ion battery anodes grown with and without a TiN interlayer , 2012 .

[7]  Zhiyong Fan,et al.  Large-scale integration of semiconductor nanowires for high-performance flexible electronics. , 2012, ACS nano.

[8]  G. Yushin,et al.  Towards Ultrathick Battery Electrodes: Aligned Carbon Nanotube – Enabled Architecture , 2012, Advanced materials.

[9]  Yong Min Lee,et al.  Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. , 2012, Nano letters.

[10]  H. Usui,et al.  Influence of order in stepwise electroless deposition on anode properties of thick-film electrodes c , 2011 .

[11]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[12]  Xiangyun Song,et al.  Polymers with Tailored Electronic Structure for High Capacity Lithium Battery Electrodes , 2011, Advanced materials.

[13]  Li-Jun Wan,et al.  Cu‐Si Nanocable Arrays as High‐Rate Anode Materials for Lithium‐Ion Batteries , 2011, Advanced materials.

[14]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[15]  Hyun Rhu,et al.  A continuous process for Si nanowires with prescribed lengths , 2011 .

[16]  V. Srinivasan,et al.  Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries , 2011, 1108.0340.

[17]  Yi Cui,et al.  One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials , 2011 .

[18]  Ting Zhu,et al.  Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating. , 2011, ACS nano.

[19]  N. Koratkar,et al.  Functionally strain-graded nanoscoops for high power Li-ion battery anodes. , 2011, Nano letters.

[20]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[21]  Huixin Chen,et al.  Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries , 2011 .

[22]  辛森,et al.  Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries , 2011 .

[23]  Song Jin,et al.  Nanostructured silicon for high capacity lithium battery anodes , 2011 .

[24]  Reza Ghodssi,et al.  Virus-enabled silicon anode for lithium-ion batteries. , 2010, ACS nano.

[25]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[26]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[27]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[28]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[29]  Jing Zhu,et al.  Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes , 2009 .

[30]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[31]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[32]  Seung M. Oh,et al.  Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries , 2005 .

[33]  D. Lemordant,et al.  Absorption ability and kinetics of a liquid electrolyte in PVDF–HFP copolymer containing or not SiO2 , 2002 .

[34]  R. Moshtev,et al.  State of the art of commercial Li ion batteries , 2000 .

[35]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .