Switchable tri-band THz polarizing rotator based on chiral metamaterials

One kind of switchable, tri-band, terahertz linear polarizing rotator is presented in this paper, which consists of sandwiched metal chiral metamaterial structure composed of twisted electric field-coupled resonators in C4 symmetry and a VO2 film on substrate for active controlling. The polarizing rotation is switchable with the state change of VO2 from an insulator to metal. Simulated results consistently demonstrate that the switchable rotator exhibits extremely low loss, high polarization conversion ratio and optical activity at the three resonance frequencies. The influence of different geometric parameters of the chiral metamaterial structure is investigated to optimize the multiband rotating response of the polarizing rotator. This switchable terahertz metamaterial-based rotator has various potential applications in terahertz wave controlling and the terahertz functional devices.

[1]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[2]  Carsten Rockstuhl,et al.  Advanced Jones calculus for the classification of periodic metamaterials , 2010, 1008.4117.

[3]  T. Sakurai,et al.  Simple formulas for two- and three-dimensional capacitances , 1983, IEEE Transactions on Electron Devices.

[4]  David R. Smith,et al.  Electric-field-coupled resonators for negative permittivity metamaterials , 2006 .

[5]  Akhlesh Lakhtakia,et al.  Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. , 2008, Optics express.

[6]  Tie Jun Cui,et al.  Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial , 2013 .

[7]  Joseph S Melinger,et al.  High-resolution waveguide THz spectroscopy of biological molecules. , 2008, Biophysical journal.

[8]  V. Shalaev Optical negative-index metamaterials , 2007 .

[9]  Xiaopeng Zhao,et al.  90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial. , 2013, Optics express.

[10]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[11]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[12]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .

[13]  E. Linfield,et al.  Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. , 2002, Physics in medicine and biology.

[14]  Xiaodong Wu,et al.  Dual-band polarization angle independent 90° polarization rotator using chiral metamaterial , 2016, IEICE Electron. Express.

[15]  Eleftherios N. Economou,et al.  Broadband blueshift tunable metamaterials and dual-band switches , 2009 .

[16]  Triple-band linear and circular reflective polarizer based on E-shaped metamaterial , 2014 .

[17]  Wei,et al.  Terahertz Metamaterial Modulator Based on Vanadium Dioxide , 2014 .

[18]  Gaofeng Wang,et al.  Using dual-band asymmetric transmission effect of 2D metamaterial to manipulate linear polarization state of electromagnetic waves , 2014 .

[19]  E. Ozbay,et al.  Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials , 2014 .

[20]  Shi Zheng,et al.  Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators , 2014 .

[21]  Tie Jun Cui,et al.  Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial. , 2013, Optics express.

[22]  Xiaojun Huang,et al.  Multiple-band reflective polarization converter using U-shaped metamaterial , 2014 .

[23]  Ekmel Ozbay,et al.  A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling , 2012 .

[24]  N I Zheludev,et al.  Asymmetric propagation of electromagnetic waves through a planar chiral structure. , 2006, Physical review letters.

[25]  Xiuhua Yuan,et al.  What makes single-helical metamaterials generate "pure" circularly polarized light? , 2012, Optics express.

[26]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .