A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes
暂无分享,去创建一个
[1] Bram Van Leer,et al. Discontinuous Galerkin for Diffusion , 2005 .
[2] Mengping Zhang,et al. AN ANALYSIS OF THREE DIFFERENT FORMULATIONS OF THE DISCONTINUOUS GALERKIN METHOD FOR DIFFUSION EQUATIONS , 2003 .
[3] Suzanne L. Weekes. The Travelling Wave Scheme for The Navier--Stokes Equations , 1998 .
[4] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[5] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[6] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[7] S. Osher,et al. Weighted essentially non-oscillatory schemes , 1994 .
[8] W. H. Reed,et al. Triangular mesh methods for the neutron transport equation , 1973 .
[10] P. Lax,et al. Systems of conservation laws , 1960 .
[11] Claus-Dieter Munz,et al. Lax–Wendroff-type schemes of arbitrary order in several space dimensions , 2006 .
[12] Eleuterio F. Toro,et al. Towards Very High Order Godunov Schemes , 2001 .
[13] J. Falcovitz,et al. A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .
[14] Eleuterio F. Toro,et al. Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..
[15] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[16] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[17] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[18] D. Arnold. An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .
[19] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[20] Eduard Harabetian. A numerical method for viscous perturbations of hyperbolic conservation laws , 1990 .
[21] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[22] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[23] Michael Dumbser,et al. Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..
[24] D. Arnold,et al. Discontinuous Galerkin Methods for Elliptic Problems , 2000 .
[25] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[26] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .