Soft synthesis and vacuum ultraviolet spectra of YAG:Ce3+ nanocrystals: reassignment of Ce3+ energy levels

Ce3+-doped YAG nanoparticles have been synthesized at relatively low temperatures by the co-precipitation and polymer-assisted sol–gel methods and characterized by Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD) and x-ray absorption near-edge structure (XANES) measurements. Calcination of the product was carried out at temperatures between 800 and 1100 °C. Products calcined at the lower temperature contained a greater proportion of Ce4+, and this contributed in part to the lower intensity of the characteristic yellow photoluminescence. The synchrotron radiation excitation spectrum of this yellow emission band exhibits bands due to Ce3+ absorption as well as the host band gap. The origin of a luminescence band at about 300 nm obtained under band-gap excitation is discussed. Previous assignments of the 5d electronic energies in YAG:Ce3+ are critically assessed, and in the light of the new energy level and transition intensity calculations a revised assignment is put forward for the 5d energy levels.

[1]  H. Gao,et al.  Fast Optical Switching Using Cyanine Dye-Doped Nematic Liquid Crystal , 2014 .

[2]  A. Vedda,et al.  Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics , 2007 .

[3]  X. Ni,et al.  Fabrication of novel threefold shape CeO2 dendrites: Optical and electrochemical properties , 2006 .

[4]  Sukhvir Singh,et al.  Enhanced luminescence of Y3Al5O12 : Ce3+ nanophosphor for white light-emitting diodes , 2006 .

[5]  董永军,et al.  Luminescence studies of Ce : YAG using vacuum ultraviolet synchrotron radiation , 2006 .

[6]  R. Grimes,et al.  Extrinsic defect structure of RE3Al5O12 garnets , 2006 .

[7]  T. Isobe Low‐temperature wet chemical syntheses of nanocrystal phosphors with surface modification and their characterization , 2006 .

[8]  M. Hon,et al.  Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes , 2006 .

[9]  Z. Fu,et al.  Spectral properties of rare-earth ions in nanocrystalline YAG:Re (Re = Ce3+, Pr3+, Tb3+) , 2006 .

[10]  Hitoshi Kuma,et al.  Glycothermal synthesis and photoluminescence of YAG:Ce3+ nanophosphors , 2006 .

[11]  Guangjun Zhao,et al.  Color centers and charge state change in Ce:YAG crystals grown by temperature gradient techniques , 2006 .

[12]  H. Yagi,et al.  Evaluation of properties of YAG (Ce) ceramic scintillators , 2005, IEEE Transactions on Nuclear Science.

[13]  E. Rosa,et al.  Low temperature synthesis and structural characterization of nanocrystalline YAG prepared by a modified sol-gel method , 2005 .

[14]  T. Isobe,et al.  Photoluminescence enhancement of PEG-modified YAG:Ce3+ nanocrystal phosphor prepared by glycothermal method. , 2005, The journal of physical chemistry. B.

[15]  A. Vedda,et al.  The antisite LuAl defect‐related trap in Lu3Al5O12:Ce single crystal , 2005 .

[16]  Shengming Zhou,et al.  Structural and optical properties of YAG:Ce3+ phosphors by sol–gel combustion method , 2005 .

[17]  M. S. Alam,et al.  Photoluminescence of phosphors for PDP with VUV excitation , 2005 .

[18]  K. Blažek,et al.  Luminescence and defects creation in Ce3+‐doped YAlO3 and Lu0.3Y0.7AlO3 crystals , 2005 .

[19]  Y. Zorenko Luminescence of isoelectronic impurities and antisite defects in garnets , 2005 .

[20]  J. W. Wang,et al.  Pressure dependence of the 4f1 5d1 4f2 emission of Pr3+:YAG using excited state absorption , 2005 .

[21]  K. Blažek,et al.  Luminescence of undoped LuAG and YAG crystals , 2005 .

[22]  O. Ishii,et al.  Efficient conversion of blue light into white light by means of rare‐earth‐ion‐doped transparent material , 2004 .

[23]  Mingmei Wu,et al.  Tailored photoluminescence of YAG:Ce phosphor through various methods , 2004 .

[24]  K. Blažek,et al.  Luminescence and defects creation in Ce3+‐doped Lu3Al5O12 crystals , 2004 .

[25]  P. A. Tanner,et al.  Theoretical analysis and intensity calculation for the f → d absorption spectrum of U3+ in the LiY F4 crystal , 2003 .

[26]  Guangjun Zhao,et al.  Temperature gradient technique (TGT) growth and characterizations of large‐sized Ce‐doped YAG scintillation crystal , 2003 .

[27]  E. Lallier,et al.  A spectroscopic investigation of Y3Al5O12:Pr3 + in translucent ceramic form: Crystal field analysis assisted by configuration-interaction , 2002 .

[28]  He-sun Zhu,et al.  Cerium oxide nanoparticles coated by surfactant sodium bis(2-ethylhexyl) sulphosuccinate (AOT): local atomic structures and x-ray absorption spectroscopic studies , 2001 .

[29]  M. F. Reid,et al.  Spectroscopy and calculations for 4fN?4fN-15d transitions of lanthanide ions in LiYF4 , 2000 .

[30]  Qiang-Bing Li,et al.  The crystal structure and spectra of nano-scale YAG:Ce3+ , 2000 .

[31]  C. Brecher,et al.  Kinetics of cerium emission in a YAG:Ce single crystal: the role of traps , 2000 .

[32]  H. Reyher,et al.  Attribution of the near-UV absorption bands of YAG:Ce to Ce3+-ions by MCD and ODMR , 1999 .

[33]  Michael Veith,et al.  Low temperature synthesis of nanocrystalline Y3Al5O12 (YAG) and Ce-doped Y3Al5O12via different sol–gel methods , 1999 .

[34]  E. Osiac,et al.  Spectral and dynamical effects of octahedral impurities on in garnets , 1998 .

[35]  M. Moszynski,et al.  Investigation of some scintillation properties of YAG:Ce crystals☆ , 1997 .

[36]  V. Murk,et al.  Exciton and recombination processes in YAG crystals , 1995 .

[37]  R. S. Rana,et al.  A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 , 1989 .

[38]  H. Ling,et al.  Preparation of Y 3Al5 O 12 ‐ Based Phosphor Powders , 1987 .

[39]  C. Warde,et al.  Optical studies of cerium doped yttrium aluminum garnet single crystals , 1984 .

[40]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[41]  P. B. Dorain,et al.  Excited‐state absorption in Eu+2: CaF2 and Ce+3: YAG single crystals at 298 and 77 K , 1981 .

[42]  W. Miniscalco,et al.  Measurements of excited‐state absorption in Ce3+ : YAG , 1978 .

[43]  W. Krupke,et al.  Measurement of excited‐state‐absorption loss for Ce3+ in Y3Al5O12 and implications for tunable 5d→4f rare‐earth lasers , 1978 .

[44]  G. A. Slack,et al.  Optical Absorption of Y 3 Al 5 O 12 from 10- to 55 000- cm − 1 Wave Numbers , 1969 .

[45]  M. Kestigian,et al.  Optical Properties of Cerium-Activated Garnet Crystals* , 1969 .

[46]  G. Blasse,et al.  Investigation of Some Ce3+‐Activated Phosphors , 1967 .

[47]  J. Bruce,et al.  Oxygen coordinates of compounds with garnet structure , 1965 .