Application of Control Point-Based Aerodynamic Shape Optimization to Two-Dimensional Drag Minimization

An investigation is presented that considers various aspects of an aerodynamic shape optimization framework. A two-dimensional aerofoil transonic zero-lift drag minimization test case is used to investigate the effect of dimensionality, shape deformation parameters, and optimizer on the results from the shape optimization process. A flexible control point-based parameterization is implemented which decouples the design variables from the surface, such that control point deformations determine the surface and volume mesh deformations in a unified manner. A gradient-based optimizer (feasible sequential quadratic programming) and global search algorithm (gravitational search algorithm) are tested on the constrained optimization case. The results show, as expected, that an increase in the number of dimensions produces a greater design space coverage and better optimization results, and the gradient-based method is prone to terminating in local optima or at constraint boundaries, so the global search algorithm is more reliable at locating optima. Efficient, reduced, and orthogonal shape deformation parameters are defined here by singular value decomposition extraction, and are shown to be particularly effective, demonstrating a 99.7% drag reduction for the case considered.

[1]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[2]  Christian B Allen,et al.  Computational-Fluid-Dynamics-Based Twist Optimization of Hovering Rotors , 2010 .

[3]  Patrice Castonguay,et al.  Aerodynamic Shape Optimization of Hovering Rotor Blades Using a NLFD Approach , 2008 .

[4]  A. Tits,et al.  Nonmonotone line search for minimax problems , 1993 .

[5]  Ning Qin,et al.  AERODYNAMIC STUDIES FOR BLENDED WING BODY AIRCRAFT , 2002 .

[6]  M. Patriksson,et al.  A method for simulation based optimization using radial basis functions , 2010 .

[7]  C. Allen,et al.  Domain-Element Method for Aerodynamic Shape Optimization Applied to a Modern Transport Wing , 2009 .

[8]  Christian B Allen,et al.  CFD‐based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation , 2008 .

[9]  A. Harrison,et al.  A Systematic Study on the Impact of Dimensionality for a Two-Dimensional Aerodynamic Optimization Model Problem , 2011 .

[10]  A. Le Moigne,et al.  Parallel adjoint-based optimisation of a blended wing body aircraft with shock control bumps , 2007, The Aeronautical Journal (1968).

[11]  Daniel J Poole,et al.  Aerofoil Design Variable Extraction for Aerodynamic Optimisation , 2013 .

[12]  J. Samareh Aerodynamic Shape Optimization Based on Free-form Deformation , 2004 .

[13]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[14]  Christian B. Allen,et al.  Reduced surface point selection options for efficient mesh deformation using radial basis functions , 2010, J. Comput. Phys..

[15]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[16]  Ijaz H. Parpia,et al.  van Leer flux vector splitting in moving coordinates , 1988 .

[17]  A. Le Pape,et al.  Aerodynamic Shape Optimization of Hovering Rotors Using a Discrete Adjoint of the Reynolds-Averaged Navier–Stokes Equations , 2011 .

[18]  A. Tits,et al.  User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates , 1990 .

[19]  A. Jameson,et al.  Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation , 1996 .

[20]  Daniel J Poole,et al.  Control Point-Based Aerodynamic Shape Optimization Applied to AIAA ADODG Test Cases , 2015 .

[21]  Christian B Allen,et al.  Multigrid convergence of inviscid fixed‐ and rotary‐wing flows , 2002 .

[22]  Malcolm I. G. Bloor,et al.  Generating parametrizations of wing geometries using partial differential equations , 1997 .

[23]  Wataru Yamazaki,et al.  Geometry Parameterization and Computational Mesh Deformation by Physics-Based Direct Manipulation Approaches , 2010 .

[24]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[25]  Steve L. Karman,et al.  Geometry Parameterization Method for Multidisciplinary Applications , 2009 .

[26]  Christian B Allen,et al.  Parallel universal approach to mesh motion and application to rotors in forward flight , 2007 .

[27]  Michael Patriksson,et al.  Combustion engine optimization: a multiobjective approach , 2010 .

[28]  Christian B. Allen,et al.  Efficient mesh motion using radial basis functions with data reduction algorithms , 2008, J. Comput. Phys..

[29]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[30]  B. Kulfan Universal Parametric Geometry Representation Method , 2008 .

[31]  A. Le Pape,et al.  Numerical optimization of helicopter rotor aerodynamic performance in hover , 2005 .

[32]  Daniel J Poole,et al.  Metric-Based Mathematical Derivation of Aerofoil Design Variables , 2014 .

[33]  Gene Hou,et al.  Simultaneous aerodynamic analysis and design optimization (SAADO) for a 3-D flexible wing , 2001 .

[34]  C. Allen,et al.  Unified fluid–structure interpolation and mesh motion using radial basis functions , 2008 .

[35]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[36]  Perry A. Newman,et al.  Simultaneous Aerodynamic Analysis and Design Optimization (SAADO) for a 3-D Flexible Wing , 2001 .

[37]  John C. Vassberg,et al.  Gradient-Based Single and Multi-points Aerodynamic Optimizations with the elsA Software , 2015 .

[38]  H. Sobieczky Parametric Airfoils and Wings , 1999 .

[39]  André L. Tits,et al.  On combining feasibility, descent and superlinear convergence in inequality constrained optimization , 1993, Math. Program..

[40]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[41]  Siva Nadarajah,et al.  Adjoint-Based Aerodynamic Shape Optimization of Rotorcraft Blades , 2008 .

[42]  Jamshid A. Samareh,et al.  Status and Future of Geometry Modeling and Grid Generation for Design and Optimization , 1999 .

[43]  E. Robert,et al.  Rapid Airplane Parametric Input Design (RAPID) , 1995 .

[44]  Gianluca Iaccarino,et al.  Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method , 2008 .

[45]  Patrice Castonguay,et al.  Effect of Shape Parameterization on Aerodynamic Shape Optimization , 2007 .

[46]  Patrice Castonguay,et al.  SURVEY OF SHAPE PARAMETERIZATION TECHNIQUES AND ITS EFFECT ON THREE-DIMENSIONAL AERODYNAMIC SHAPE OPTIMIZATION , 2007 .

[47]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[48]  John E. Bussoletti,et al.  "Fundamental" Parameteric Geometry Representations for Aircraft Component Shapes , 2006 .

[49]  O. Amoignon AESOP—a numerical platform for aerodynamic shape optimization , 2010 .

[50]  Juan J. Alonso,et al.  Mutiobjective Optimization Using Approximation Model-Based Genetic Algorithms , 2004 .