De Sitter Solutions in Models with the Gauss-Bonnet Term

De Sitter solutions play an important role in cosmology because the knowledge of unstable de Sitter solutions can be useful in describing inflation, whereas stable de Sitter solutions are often used in models of the late-time acceleration of the Universe. Einstein–Gauss–Bonnet models are actively used as both inflationary models and dark energy models. To modify the Einstein equations, one can add a nonlinear function of the Gauss–Bonnet term or a function of the scalar field multiplied on the Gauss–Bonnet term. The effective potential method essentially simplifies the search and stability analysis of de Sitter solutions, because the stable de Sitter solutions correspond to the minima of the effective potential.

[1]  E. Pozdeeva Deviation from Slow-Roll Regime in the EGB Inflationary Models with r ∼ Ne−1 , 2021, Universe.

[2]  E. Pozdeeva,et al.  De Sitter Solutions in Einstein–Gauss–Bonnet Gravity , 2021, Universe.

[3]  E. Pozdeeva,et al.  Construction of inflationary scenarios with the Gauss–Bonnet term and nonminimal coupling , 2021, The European Physical Journal C.

[4]  V. Oikonomou,et al.  Late-time cosmology of scalar-coupled f(R,G) gravity , 2021, Classical and Quantum Gravity.

[5]  M. Gangopadhyay,et al.  Inflation with a quartic potential in the framework of Einstein-Gauss-Bonnet gravity , 2020, Physical Review D.

[6]  E. Pozdeeva Generalization of cosmological attractor approach to Einstein–Gauss–Bonnet gravity , 2020, 2005.10133.

[7]  I. Fomin Gauss–Bonnet term corrections in scalar field cosmology , 2020, The European Physical Journal C.

[8]  V. Oikonomou,et al.  Swampland implications of GW170817-compatible Einstein-Gauss-Bonnet gravity , 2020, 2004.00479.

[9]  V. Oikonomou,et al.  Rectifying Einstein-Gauss-Bonnet inflation in view of GW170817 , 2020, Nuclear Physics B.

[10]  Y. Gong,et al.  Gauss–Bonnet Inflation and the String Swampland , 2019, Universe.

[11]  M. Sami,et al.  Stability analysis of de Sitter solutions in models with the Gauss-Bonnet term , 2019, Physical Review D.

[12]  I. Fomin,et al.  Reconstruction of general relativistic cosmological solutions in modified gravity theories , 2019, Physical Review D.

[13]  V. Oikonomou,et al.  Viable inflation in scalar-Gauss-Bonnet gravity and reconstruction from observational indices , 2018, Physical Review D.

[14]  Mudassar Sabir,et al.  Inflation with Gauss-Bonnet coupling , 2018, Physical Review D.

[15]  S. Chakraborty,et al.  Inflation driven by Einstein-Gauss-Bonnet gravity , 2018, Physical Review D.

[16]  S. Capozziello,et al.  Observational constraints on Gauss–Bonnet cosmology , 2018, International Journal of Modern Physics D.

[17]  V. Oikonomou Autonomous Dynamical System Approach for Inflationary Gauss-Bonnet Modified Gravity , 2017, 1711.03389.

[18]  Qiang Wu,et al.  Primordial Spectra of slow-roll inflation at second-order with the Gauss-Bonnet correction , 2017, 1707.08020.

[19]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[20]  K. Nozari,et al.  Perturbation, non-Gaussianity, and reheating in a Gauss-Bonnet $\alpha$-attractor model , 2017, 1705.02617.

[21]  E. Pozdeeva,et al.  Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields , 2016, 1608.08214.

[22]  C. V. D. Bruck,et al.  Higgs Inflation with a Gauss-Bonnet term in the Jordan Frame , 2015, 1512.04768.

[23]  Wonwoo Lee,et al.  Observational constraints on slow-roll inflation coupled to a Gauss-Bonnet term , 2014, 1404.6096.

[24]  S. Vernov,et al.  Global stability analysis for cosmological models with nonminimally coupled scalar fields , 2014, 1404.6226.

[25]  E. Elizalde,et al.  ΛCDM epoch reconstruction from F(R, G) and modified Gauss–Bonnet gravities , 2010, 1001.3636.

[26]  D. Schwarz,et al.  Slow-roll inflation with a Gauss-Bonnet correction , 2010, 1001.1897.

[27]  E. Elizalde,et al.  String-inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy , 2006, hep-th/0611198.

[28]  S. Tsujikawa,et al.  String-inspired cosmology: a late time transition from a scaling matter era to a dark energy universe caused by a Gauss–Bonnet coupling , 2006, hep-th/0608178.

[29]  E. Elizalde,et al.  Dark energy in modified Gauss-Bonnet gravity: Late-time acceleration and the hierarchy problem , 2005, hep-th/0601008.

[30]  G. Calcagni,et al.  Dark energy and cosmological solutions in second-order string gravity , 2005, hep-th/0505193.

[31]  S. Tsujikawa,et al.  The fate of (phantom) dark energy universe with string curvature corrections , 2005, hep-th/0504154.

[32]  S. Nojiri,et al.  Gauss-Bonnet dark energy , 2005, hep-th/0504052.

[33]  J. Hwang,et al.  Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons : Unified analyses , 2004, gr-qc/0412126.

[34]  E. Copeland,et al.  Evolution of cosmological perturbations in nonsingular string cosmologies , 2001, astro-ph/0106197.

[35]  Shinsuke Kawai,et al.  Evolution of fluctuations during graceful exit in string cosmology , 1999, Physics Letters B.

[36]  J. Rizos,et al.  Singularity-free cosmological solutions of the superstring effective action , 1993, hep-th/9305025.