Permutations, Signs, and Sum Ranges
暂无分享,去创建一个
[1] Vaja Tarieladze,et al. Series with Commuting Terms in Topologized Semigroups , 2021, Axioms.
[2] G. Giorgobiani. Rearrangements of Series , 2019, Journal of Mathematical Sciences.
[3] J. O. Wojtaszczyk. A series whose sum range is an arbitrary finite set , 2008, 0803.0415.
[4] M. Talagrand. Type and infratype in symmetric sequence spaces , 2004 .
[5] V. Tarieladze,et al. Nuclear and GP-Nuclear Groups , 2000 .
[6] A. Defant,et al. The Levy-Steinitz rearrangement theorem for duals of metrizable spaces , 1999, math/9908112.
[7] M. Talagrand. Type, infratype and the Elton-Pajor theorem , 1992 .
[8] P. Kornilov. ON THE SET OF SUMS OF A CONDITIONALLY CONVERGENT SERIES OF FUNCTIONS , 1990 .
[9] D. V. Pecherskiĭ. REARRANGEMENTS OF SERIES IN BANACH SPACES AND ARRANGEMENTS OF SIGNS , 1989 .
[10] N. Vakhania,et al. Probability Distributions on Banach Spaces , 1987 .
[11] S. Chobanyan. STRUCTURE OF THE SET OF SUMS OF A CONDITIONALLY CONVERGENT SERIES IN A NORMED SPACE , 1987 .
[12] P. Kornilov. ON REARRANGEMENTS OF CONDITIONALLY CONVERGENT SERIES OF FUNCTIONS , 1982 .
[13] D. V. Pečerskiĭ. a Theorem on Projections of Rearranged Series with Terms in L_p , 1977 .
[14] Y. Katznelson,et al. Conditionally convergent series in $R^{\infty}$. , 1974 .
[15] E. M. Nikishin. Rearrangements of series in Lp , 1973 .
[16] B. Kashin. On a property of functional series , 1972 .
[17] V. Fonf. Conditionally convergent series in a uniformly smooth Banach space , 1972 .
[18] E. M. Nikišin. REARRANGEMENTS OF FUNCTION SERIES , 1971 .
[19] E. M. Nikishin. On the set of sums of a functional series , 1970 .
[20] R. Dudley. Corrections to: “On sequential convergence” , 1970 .
[21] V. Drobot. Rearrangements of series of functions , 1969 .
[22] R. Dudley. ON SEQUENTIAL CONVERGENCE , 1964 .
[23] H. Hadwiger. Über die Konvergenzarten unendlicher Reihen im Hilbertschen Raum , 1942 .
[24] H. Hadwiger. Über das Umordnungsproblem im Hilbertschen Raum , 1940 .
[25] W. Gross,et al. Bedingt konvergente Reihen , 1917 .
[26] Ulisse Dini. Sui prodotti infiniti , 1868 .
[27] Paul B. Garrett. Topological vector spaces , 2016 .
[28] S. Levental,et al. On rearrangement theorems in Banach spaces , 2014 .
[29] L. Maligranda. Józef Marcinkiewicz (1910-1940) - on the centenary of his birth , 2011 .
[30] M. A. Sofi,et al. LEVY - STEINITZ THEOREM IN INFINITE DIMENSION , 2008 .
[31] P. Rosenthal. The Remarkable Theorem of Levy and Steinitz , 2007 .
[32] M. J. Chasco,et al. On rearrangements of series in locally convex spaces. , 1997 .
[33] S. Chobanyan,et al. Convergence A.S. of Rearranged Random Series in Banach Space and Associated Inequalities , 1994 .
[34] W. Banaszczyk. Rearrangement of series in nonnuclear spaces , 1993 .
[35] W. Banaszczyk. Balancing vectors and convex bodies , 1993 .
[36] Wojciech Banaszczyk,et al. The Steinitz theorem on rearrangement of series for nuclear spaces. , 1990 .
[37] V. Drobot. A note on rearrangements of series , 1970 .
[38] C. Mcarthur. On Relationships Amongst Certain Spaces Of Sequences In An Arbitrary Banach Space , 1956, Canadian Journal of Mathematics.
[39] A. Dvoretzky,et al. Convergence- and sum-factors for series of complex numbers , 1951 .
[40] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. , 1913 .
[41] P. Levy,et al. Sur les séries semi-convergentes , 2022 .
[42] M. Fréchet. Sur le résultat du changement de l'ordre des termes dans une série , 1903 .