Evaluating the Three Methods of Goodness of Fit Test for Frequency Analysis

In hydrological statistics, the traditional assessment of goodness of fit test is interested in the testing precision to the sample generated from supposed PDF. However, the ability to reject the hypotheses when the supposed PDF is different from real PDF should be also emphasized. In addition, the sensitivity of test method to series length is important in hydrological analysis. Three methods of goodness of fit test that include Chi-Square (C-S), Kolmogorov-Smirnov (K-S), and Anderson-Darling (A-D) tests are applied in this study. The results of power test indicate that the most powerful tests for normal, uniform, P3, and Weibull distribution are K-S, C-S, and A-D tests, respectively. The test method with the best comprehensive power is C-S test, followed by K-S and A-D test.

[1]  Rodrigo Proença de Oliveira,et al.  Evaluation of extreme precipitation estimates from TRMM in Angola , 2015 .

[2]  H. Kwon,et al.  Spatio-temporal analysis of extreme precipitation regimes across South Korea and its application to regionalization , 2012 .

[3]  K. Srinivasa Raju,et al.  Classification of microwatersheds based on morphological characteristics , 2011 .

[4]  T. Bi,et al.  Frequency analysis and new cartography of extremes daily rainfall events in Côte d'Ivoire. , 2010 .

[5]  Sangyeol Lee ON THE GOODNESS OF FIT TEST FOR DISCRETELY OBSERVED SAMPLE FROM DIFFUSION PROCESSES: DIVERGENCE MEASURE APPROACH , 2010 .

[6]  C. Durot,et al.  Goodness‐of‐Fit Test for Monotone Functions , 2010 .

[7]  Fanggang Wang,et al.  Fast and Robust Modulation Classification via Kolmogorov-Smirnov Test , 2010, IEEE Transactions on Communications.

[8]  Martijn J. Booij,et al.  Uncertainty analysis in statistical modeling of extreme hydrological events , 2010 .

[9]  Armelle Guillou,et al.  Goodness-of-fit testing for Weibull-type behavior , 2010 .

[10]  H. F. Coronel-Brizio,et al.  The Anderson-Darling test of fit for the power law distribution from left censored samples , 2010, 1004.0417.

[11]  Barry C. Arnold,et al.  A goodness of fit test for the Pareto distribution in the presence of Type II censoring, based on the cumulative hazard function , 2010, Comput. Stat. Data Anal..

[12]  Vijay P. Singh,et al.  Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm , 2010 .

[13]  X. Chen,et al.  Regional flood frequency and spatial patterns analysis in the Pearl River Delta region using L-moments approach , 2010 .

[14]  Betül Saf,et al.  Regional Flood Frequency Analysis Using L Moments for the Buyuk and Kucuk Menderes River Basins of Turkey , 2009 .

[15]  Hesham M. Bekhit,et al.  Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model , 2009, Environ. Model. Softw..

[16]  A. Shabri,et al.  Frequency analysis of maximum daily rainfalls via L-moment approach , 2009 .

[17]  G. Torrieri,et al.  Kolmogorov-Smirnov test and its use for the identification of fireball fragmentation , 2009, 0902.1607.

[18]  F. Lansigan,et al.  Frequency analysis of extreme hydrologic events and assessment of water stress in a changing climate in the Philippines , 2008 .

[19]  C. Sandoval,et al.  Trivariate generalized extreme value distribution in flood frequency analysis , 2008 .

[20]  Bernard Bobée,et al.  Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review , 2006 .

[21]  Tae‐Woong Kim,et al.  Rainfall frequency analysis using a mixed Gamma distribution: evaluation of the global warming effect on daily rainfall , 2005 .

[22]  Quanxi Shao,et al.  Models for extremes using the extended three-parameter Burr XII system with application to flood frequency analysis / Modèles d’extrêmes utilisant le système Burr XII étendu à trois paramètres et application à l’analyse fréquentielle des crues , 2004 .

[23]  M. Bayazit,et al.  Power Distribution for Low Streamflows , 2001 .

[24]  V. Smakhtin Low flow hydrology: a review , 2001 .

[25]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[26]  Chris P. Tsokos,et al.  Estimation of the three parameter Weibull probability distribution , 1995 .

[27]  M. Bayazit,et al.  Best-fit distributions of largest available flood samples , 1995 .

[28]  Chris P. Tsokos,et al.  Parameter estimation of the Weibull probability distribution , 1994 .

[29]  Francis H. S. Chiew,et al.  Floodflow frequency model selection in Australia , 1993 .

[30]  T.A.G. Gunasekara,et al.  Expected probabilities of exceedance for non-normal flood distributions , 1991 .

[31]  M. I. Ahmad,et al.  Assessment of flood frequency models using empirical distribution function statistics , 1988 .

[32]  Vijay P. Singh,et al.  Derivation of the Pearson type (PT) III distribution by using the principle of maximum entropy (POME) , 1987 .

[33]  Edward J. Dunne,et al.  Modified Goodness-of-Fit Tests for Gamma Distributions with Unknown Location and Scale Parameters , 1984, IEEE Transactions on Reliability.

[34]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[35]  A. Jemain,et al.  On the comparison of several goodness of fit tests: With application to wind speed data , 2009 .

[36]  M. Lefebvre Applied probability and statistics , 2006 .

[37]  P. Gelder,et al.  Study of parameter estimation methods for Pearson-III distribution in flood frequency analysis , 2002 .

[38]  W. R. Schucany,et al.  Minimum Distance Estimation and Components of Goodness-of-fit Statistics , 1982 .