Mid-infrared intersubband polaritons in dispersive metal-insulator-metal resonators

We demonstrate room-temperature strong coupling between a mid-infrared (λ = 9.9 μm) intersubband transition and the fundamental cavity mode of a metal-insulator-metal resonator. Patterning of the resonator surface enables surface-coupling of the radiation and introduces an energy dispersion which can be probed with angle-resolved reflectivity. In particular, the polaritonic dispersion presents an accessible energy minimum at k = 0 where—potentially—polaritons can accumulate. We also show that it is possible to maximize the coupling of photons into the polaritonic states and—simultaneously—to engineer the position of the minimum Rabi splitting at a desired value of the in-plane wavevector. This can be precisely accomplished via a simple post-processing technique. The results are confirmed using the temporal coupled mode theory formalism and their significance in the context of the strong critical coupling concept is highlighted.

[1]  I. Sagnes,et al.  Optical critical coupling into highly confining metal-insulator-metal resonators , 2013 .

[2]  A. Tredicucci,et al.  Ultrafast optical bleaching of intersubband cavity polaritons , 2012 .

[3]  D. Bajoni Polariton lasers. Hybrid light–matter lasers without inversion , 2012 .

[4]  C. Ciuti Quantum fluids of light , 2012, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[5]  C. Ciuti,et al.  Terahertz lasing from intersubband polariton-polariton scattering in asymmetric quantum wells , 2012, 1204.4053.

[6]  A. Davies,et al.  Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures , 2012, Nature Communications.

[7]  C. Sirtori,et al.  Optical phonon scattering of cavity polaritons in an electroluminescent device , 2011, 1212.4772.

[8]  C. Sirtori,et al.  Intersubband electroluminescent devices operating in the strong-coupling regime , 2010, 1212.6159.

[9]  C. Sirtori,et al.  Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. , 2009, Physical review letters.

[10]  C. Ciuti,et al.  Stimulated scattering and lasing of intersubband cavity polaritons. , 2008, Physical review letters.

[11]  G. Konstantinidis,et al.  A GaAs polariton light-emitting diode operating near room temperature , 2008, Nature.

[12]  C. Ciuti,et al.  Quantum model of microcavity intersubband electroluminescent devices , 2007, 0711.3146.

[13]  C. Simon,et al.  Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime , 2006, quant-ph/0610172.

[14]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[15]  C. Sirtori,et al.  Quantum cascade intersubband polariton light emitters , 2005 .

[16]  Giorgio Biasiol,et al.  Microcavity polariton splitting of intersubband transitions. , 2003, Physical review letters.

[17]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[18]  M. S. Skolnick,et al.  Angle-resonant stimulated polariton amplifier , 2000, Physical review letters.

[19]  D. Whittaker,et al.  Scattering-matrix treatment of patterned multilayer photonic structures , 1999 .

[20]  M. Załużny,et al.  Coupling of infrared radiation to intersubband transitions in multiple quantum wells: The effective-medium approach , 1999 .

[21]  J. B. Stark,et al.  Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection , 1998 .

[22]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[23]  Lifeng Li,et al.  Use of Fourier series in the analysis of discontinuous periodic structures , 1996 .

[24]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[25]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[26]  J. Hopfield a Quantum-Mechanical Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. , 1958 .