Entanglement-enhanced measurement of a completely unknown phase

We demonstrate a method for achieving phase measurements with accuracy beyond the standard quantum limit using entangled states. A sophisticated feedback scheme means that no initial estimate of the phase is required.

[1]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Brian J. Smith,et al.  Real-world quantum sensors: evaluating resources for precision measurement. , 2010, Physical review letters.

[4]  H. M. Wiseman,et al.  How to perform the most accurate possible phase measurements , 2009, 0907.0014.

[5]  Hugo Cable,et al.  Parameter estimation with entangled photons produced by parametric down-conversion. , 2009, Physical review letters.

[6]  Samuel L. Braunstein,et al.  How large a sample is needed for the maximum likelihood estimator to be approximately Gaussian , 1992 .

[7]  Hugo Cable,et al.  Efficient generation of large number-path entanglement using only linear optics and feed-forward. , 2007, Physical review letters.

[8]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[9]  M. W. Mitchell,et al.  Super-resolving phase measurements with a multiphoton entangled state , 2004, Nature.

[10]  Keiji Sasaki,et al.  Beating the standard quantum limit: phase super-sensitivity of N-photon interferometers , 2008, 0804.0087.

[11]  Jonathan P Dowling,et al.  Local and global distinguishability in quantum interferometry. , 2007, Physical review letters.

[12]  G. Summy,et al.  PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .

[13]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[14]  Sanders,et al.  Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement. , 1989, Physical review. A, General physics.

[15]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[16]  Jian-Wei Pan,et al.  De Broglie wavelength of a non-local four-photon state , 2003, Nature.

[17]  R. B. Blakestad,et al.  Creation of a six-atom ‘Schrödinger cat’ state , 2005, Nature.

[18]  I. Walmsley,et al.  Experimental quantum-enhanced estimation of a lossy phase shift , 2009, 0906.3511.

[19]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[20]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[21]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[22]  Howard Mark Wiseman,et al.  Optimal input states and feedback for interferometric phase estimation , 2001 .

[23]  Y. Silberberg,et al.  High-NOON States by Mixing Quantum and Classical Light , 2010, Science.

[24]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[25]  Tae-Woo Lee,et al.  Optimization of quantum interferometric metrological sensors in the presence of photon loss , 2009, 0908.3008.

[26]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[27]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[28]  E. Bagan,et al.  Phase estimation for thermal Gaussian states , 2008, 0811.3408.

[29]  Milburn,et al.  Optimal quantum measurements for phase estimation. , 1995, Physical review letters.

[30]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[31]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[32]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[33]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.