Breakup of diminutive Rayleigh jets

Discharging a liquid from a nozzle at sufficient large velocity leads to a continuous jet that due to capillary forces breaks up into droplets. Here we investigate the formation of microdroplets from the breakup of micron-sized jets with ultra high-speed imaging. The diminutive size of the jet implies a fast breakup time scale τc = of the order of 100 ns, and requires imaging at 14×106 frames/s. We directly compare these experiments with a numerical lubrication approximation model that incorporates inertia, surface tension, and viscosity [ J. Eggers and T. F. Dupont, J. Fluid Mech. 262, 205 (1994) ; X. D. Shi, M. P. Brenner, and S. R. Nagel, Science 265, 219 (1994) ]. The lubrication model allows to efficiently explore the parameter space to investigate the effect of jet velocity and liquid viscosity on the formation of satellite droplets. In the phase diagram, we identify regions where the formation of satellite droplets is suppressed. We compare the shape of the droplet at pinch-off between the lubrication approximation model and a boundary-integral calculation, showing deviations at the final moment of the pinch-off. In spite of this discrepancy, the results on pinch-off times and droplet and satellite droplet velocity obtained from the lubrication approximation agree with the high-speed imaging results

[1]  David Y. H. Pui,et al.  Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range , 1995 .

[2]  Osman A. Basaran,et al.  Computational analysis of drop-on-demand drop formation , 2007 .

[3]  E. Villermaux,et al.  Physics of liquid jets , 2008 .

[4]  Scott D. Phillips,et al.  Computational and experimental analysis of dynamics of drop formation , 1999 .

[5]  Chris R Kleijn,et al.  Predictive model for the size of bubbles and droplets created in microfluidic T-junctions. , 2010, Lab on a chip.

[6]  H. Wijshoff,et al.  The dynamics of the piezo inkjet printhead operation , 2010 .

[7]  T. Dupont,et al.  Drop Formation in a One-Dimensional Approximation of the Navier-Stokes Equation , 1992, physics/0110081.

[8]  F. J. García,et al.  The measurement of growth rates in capillary jets , 2009, Journal of Fluid Mechanics.

[9]  S. Quake,et al.  Dynamic pattern formation in a vesicle-generating microfluidic device. , 2001, Physical review letters.

[10]  Michael P Brenner,et al.  The optimal faucet. , 2004, Physical review letters.

[11]  S. Heister,et al.  Droplet size control in liquid jet breakup , 1996 .

[12]  E. Furlani,et al.  Nonlinear analysis of the deformation and breakup of viscous microjets using the method of lines , 2011 .

[13]  Elena Castro-Hernández,et al.  Scaling the drop size in coflow experiments , 2009 .

[14]  Hariprasad J. Subramani,et al.  Dripping-jetting transitions in a dripping faucet. , 2004, Physical review letters.

[15]  Alvin U. Chen,et al.  Computational and experimental analysis of pinch-off and scaling. , 2002, Physical review letters.

[16]  H. C. Lee,et al.  Satellite droplet formation in a liquid jet , 1977 .

[17]  L. Rayleigh On the Capillary Phenomena of Jets , 1879 .

[18]  Gerhard Scheuch,et al.  Targeting delivery of aerosols to different lung regions. , 2002, Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine.

[19]  Patrick K. Notz,et al.  Satellite drops: Unexpected dynamics and change of scaling during pinch-off , 2001 .

[20]  D. Weitz,et al.  Monodisperse Double Emulsions Generated from a Microcapillary Device , 2005, Science.

[21]  Detlef Lohse,et al.  Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames , 2003 .

[22]  J. Plateau,et al.  Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires , 1873 .

[23]  R. Reitz,et al.  DROP AND SPRAY FORMATION FROM A LIQUID JET , 1998 .

[24]  Osman A. Basaran,et al.  Small‐scale free surface flows with breakup: Drop formation and emerging applications , 2002 .

[25]  Alfonso M. Gañán-Calvo,et al.  Focusing capillary jets close to the continuum limit , 2007 .

[26]  H. Le,et al.  Progress and Trends in Ink-jet Printing Technology , 1998, Journal of Imaging Science and Technology.

[27]  Alfonso M. Gañán-Calvo,et al.  Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams , 1998 .

[28]  Ephraim Gutmark,et al.  Flow control with noncircular jets , 1999 .

[29]  Sidney R. Nagel,et al.  Breakdown of scaling in droplet fission at high Reynolds number , 1997 .

[30]  A. Gomez,et al.  Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation , 1994 .

[31]  John R. Lister,et al.  Capillary pinch-off in inviscid fluids , 2003 .

[32]  B Ambravaneswaran,et al.  Theoretical analysis of a dripping faucet. , 2000, Physical review letters.

[33]  Hydrodynamical models for the chaotic dripping faucet , 2004, Journal of Fluid Mechanics.

[34]  A. Kalaaji,et al.  Breakup length of forced liquid jets , 2003 .

[35]  D. Mitchell,et al.  Effect of particle size of bronchodilator aerosols on lung distribution and pulmonary function in patients with chronic asthma. , 1987, Thorax.

[36]  M. Brenner,et al.  A Cascade of Structure in a Drop Falling from a Faucet , 1994, Science.

[37]  H. Stone,et al.  Formation of dispersions using “flow focusing” in microchannels , 2003 .

[38]  John R. Lister,et al.  SELF-SIMILAR CAPILLARY PINCHOFF OF AN INVISCID FLUID , 1997 .

[39]  D. Lohse,et al.  High-speed jet formation after solid object impact. , 2008, Physical review letters.

[40]  O. Basaran,et al.  Analysis of the drop weight method , 2005 .

[41]  O. Basaran,et al.  Drop formation from a capillary tube: Comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops , 2002 .

[42]  O. Basaran,et al.  Fluid Dynamics: The invisible jet , 2007 .

[43]  J. Eggers Nonlinear dynamics and breakup of free-surface flows , 1997 .

[44]  U. Landman,et al.  Formation, stability, and breakup of nanojets , 2000, Science.

[45]  D. Bogy Drop Formation in a Circular Liquid Jet , 1979 .