Existence and iterative approximation of solutions of a system of general variational inclusions

In this paper, we consider a system of general variational inclusions in q-uniformly smooth Banach spaces. Using proximal-point mapping technique, we prove the existence and uniqueness of solution and suggest a Mann type perturbed iterative algorithm for the system of general variational inclusions. We also discuss the convergence criteria and stability of Mann type perturbed iterative algorithm. The techniques and results presented here improve the corresponding techniques and results for the variational inequalities and inclusions in the literature.

[1]  Igor V. Konnov,et al.  Relatively monotone variational inequalities over product sets , 2001, Oper. Res. Lett..

[2]  J. Aubin Mathematical methods of game and economic theory , 1979 .

[3]  Kaleem Raza Kazmi,et al.  Convergence and stability of iterative algorithms of generalized set-valued variational-like inclusions in Banach spaces , 2005, Appl. Math. Comput..

[4]  Habtu Zegeye,et al.  Existence and convergence theorems for a class of multi-valued variational inclusions in Banach spaces , 2004 .

[5]  Abdellatif Moudafi,et al.  A Perturbed Algorithm for Variational Inclusions , 1994 .

[6]  K. R. Kazmi,et al.  Convergence and stability of a three-step iterative algorithm for a general quasi-variational inequality problem , 2006 .

[7]  Nan-jing Huang,et al.  Generalized nonlinear variational inclusions with noncompact valued mappings , 1996 .

[8]  R. U. Verma,et al.  Projection methods, algorithms, and a new system of nonlinear variational inequalities , 2001 .

[9]  Lishan Liu,et al.  Ishikawa and Mann Iterative Process with Errors for Nonlinear Strongly Accretive Mappings in Banach Spaces , 1995 .

[10]  Muhammad Aslam Noor,et al.  Generalized Set-Valued Variational Inclusions and Resolvent Equations , 1998 .

[11]  I. Ciorǎnescu Geometry of banach spaces, duality mappings, and nonlinear problems , 1990 .

[12]  Yeol Je Cho,et al.  Generalized nonlinear mixed quasi-variational inequalities , 2000 .

[13]  Habtu Zegeye,et al.  Iterative approximation of a solution of a general variational-like inclusion in Banach spaces , 2004, Int. J. Math. Math. Sci..

[14]  Kaleem Raza Kazmi,et al.  Iterative algorithm for generalized quasi-variational-like inclusions with fuzzy mappings in Banach spaces , 2006 .

[15]  Lu-Chuan Zeng,et al.  Characterization of H-monotone operators with applications to variational inclusions , 2005 .

[16]  Xie Ping Ding,et al.  Perturbed Proximal Point Algorithms for Generalized Quasivariational Inclusions , 1997 .

[17]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[18]  Hong-Kun Xu Inequalities in Banach spaces with applications , 1991 .

[19]  Jong-Shi Pang,et al.  Asymmetric variational inequality problems over product sets: Applications and iterative methods , 1985, Math. Program..

[20]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[21]  Stability of Noor iterations with errors for generalized nonlinear complementarity problems. , 2004 .

[22]  Shin Min Kang,et al.  General Strongly Nonlinear Quasivariational Inequalities with Relaxed Lipschitz and Relaxed Monotone Mappings , 2002 .

[23]  Muhammad Aslam Noor,et al.  Implicit resolvent dynamical systems for quasi variational inclusions , 2002 .

[24]  M. Osilike Stability of the Mann and Ishikawa Iteration Procedures for φ-Strong Pseudocontractions and Nonlinear Equations of the φ-Strongly Accretive Type , 1998 .

[25]  Kaleem Raza Kazmi,et al.  Iterative algorithm for a system of nonlinear variational-like inclusions , 2004 .

[26]  Lu-Chuan Zeng,et al.  A PROXIMAL METHOD FOR PSEUDOMONOTONE TYPE VARIATIONAL-LIKE INEQUALITIES , 2006 .

[27]  Kaleem Raza Kazmi,et al.  Iterative approximation of a unique solution of a system of variational-like inclusions in real q-uniformly smooth Banach spaces , 2007 .

[28]  Hedy Attouch,et al.  Familles d'opérateurs maximaux monotones et mesurabilité , 1979 .

[29]  Xie Ping Ding,et al.  Generalized quasi-variational-like inclusions with nonconvex functionals , 2001, Appl. Math. Comput..

[30]  Kaleem Raza Kazmi,et al.  Mann and Ishikawa Type Perturbed Iterative Algorithms for Generalized Quasivariational Inclusions , 1997 .

[31]  Xie Ping Ding,et al.  A new class of completely generalized quasi-variational inclusions in Banach spaces , 2002 .

[32]  Jen-Chih Yao,et al.  A fixed point theorem and its applications to a system of variational inequalities , 1999, Bulletin of the Australian Mathematical Society.

[33]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[34]  Xie Ping Ding,et al.  Perturbed proximal point algorithms for general quasi-variational-like inclusions , 2000 .

[35]  Samir Adly,et al.  Perturbed algorithms and sensitivity analysis for a general class of variational inclusions , 1996 .

[36]  G. Cohen,et al.  Nested monotony for variational inequalities over product of spaces and convergence of iterative algorithms , 1988 .

[37]  Nan-jing Huang A new class of generalized set-valued implicit variational inclusions in banach spaces with an application , 2001 .

[38]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[39]  K. R. Kazmi,et al.  Iterative approximation of a solution of multi-valued variational-like inclusion in Banach spaces: A P -η-proximal-point mapping approach , 2007 .

[40]  Yeol Je Cho,et al.  ALGORITHMS FOR SYSTEMS OF NONLINEAR VARIATIONAL INEQUALITIES , 2004 .

[41]  Ravi P. Agarwal,et al.  Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings. , 2002 .

[42]  Xie Ping Ding,et al.  Existence and algorithm of solutions for mixed quasi-variational-like inclusions in Banach spaces , 2005 .

[43]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .