Oligonucleotide immobilization on micropatterned streptavidin surfaces.

We describe a simple procedure for photolithographic patterning of streptavidin on silicon substrates. Long wavelength UV (365 nm) light was used to direct the covalent attachment of photoactivatable biotin onto silylated silicon wafers. Fluorescently labeled streptavidin was found to bind only in areas exposed to the light. We used this procedure to selectively pattern streptavidin inside microwells etched in silicon, and we investigated the binding characteristics of biotinylated oligonucleotides of lengths, n = 16, 54 and 99 bases. The binding curves were found to fit the functional form of the Langmuir isotherm, with binding saturation proportional to n(-3/4).