Intra-particle diffusion limitations in low-pressure methanol synthesis

Abstract The dusty gas diffusion model was applied for the description of intra-particle diffusion limitations in methanol synthesis over a commercial CuZnAl catalyst. Experimental kinetic data were obtained at p = 10–50 bar and T = 210–275°C using a spinning basket reactor and a fixed bed catalytic reactor, starting from carbon monoxide, carbon dioxide and hydrogen. The results, obtained from experiments with two different catalyst particle sizes, show that commercial size catalyst particles exhibit intra-particle diffusion limitations. Combining the dusty gas diffusion with kinetic rate expressions for methanol formation from CO, methanol formation from CO 2 and the water-gas shift reaction, good agreement with experimental data was obtained.

[1]  D. G. Tajbl,et al.  Heterogeneous Catalysis in Continuous Stirred Tank Reactor , 1966 .

[2]  E. Stamhuis,et al.  Kinetics of low-pressure methanol synthesis , 1988 .

[3]  P. Zehner,et al.  Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen , 1970 .

[4]  Jerzy Skrzypek,et al.  Theoretical analysis of two parallel and consecutive reactions in isothermal symmetrical catalyst pellets using the dusty-gas model , 1984 .

[5]  D. Thoenes,et al.  Mass transfer from spheres in various regular packings to a flowing fluid , 1958 .

[6]  Edward A. Mason,et al.  Gaseous Diffusion Coefficients , 1972 .

[7]  Anthony G. Dixon,et al.  Theoretical prediction of effective heat transfer parameters in packed beds , 1979 .

[8]  R. Aris,et al.  Communications on the theory of diffusion and reaction—II the effect of shape on the effectiveness factor , 1969 .

[9]  Víctor Pereyra,et al.  PASVA3: An Adaptive Finite Difference Fortran Program for First Order Nonlinear, Ordinary Boundary Problems , 1978, Codes for Boundary-Value Problems in Ordinary Differential Equations.

[10]  Eize Stamhuis,et al.  ON CHEMICAL-EQUILIBRIA IN METHANOL SYNTHESIS , 1990 .

[11]  G. Luft,et al.  Untersuchungen zur Methanol-Synthese im Mitteldruckbereich† , 1985 .

[12]  R. W. Rousseau,et al.  Methanol synthesis reactions: calculations of equilibrium conversions using equations of state , 1986 .

[13]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[14]  A. P. Malinauskas,et al.  Flow and Diffusion of Gases in Porous Media , 1967 .

[15]  M. Grzesik,et al.  Analysis of the low-temperature methanol synthesis in a single commercial isothermal Cu-Zn-Al catalyst pellet using the dusty-gas diffusion model , 1985 .

[16]  E. Supp,et al.  IMPROVED METHANOL PROCESS , 1981 .

[17]  I. B. Dybkjær,et al.  Design of Ammonia and Methanol Synthesis Reactors , 1986 .

[18]  E. Schlünder,et al.  Wärme‐ und Stoffübertragung zwischen durchströmten Schüttungen und darin eingebetteten Einzelkörpern , 1966 .

[19]  P. Schneider,et al.  Catalyst effectiveness in low-temperature water—gas shift reaction , 1984 .