On the convergence of characteristic finite-difference methods of high accuracy for quasi-linear hyperbolic equations

[1]  G. Dahlquist Convergence and stability in the numerical integration of ordinary differential equations , 1956 .

[2]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[3]  L. Collatz The numerical treatment of differential equations , 1961 .

[4]  R. D. Richtmyer,et al.  Survey of the stability of linear finite difference equations , 1956 .

[5]  K. Friedrichs,et al.  Das Anfangswertproblem einer beliebigen nichtlinearen hyperbolischen Differentialgleichung beliebiger Ordnung in zwei Variablen. Existenz, Eindeutigkeit und Abhängigkeitsbereich der Lösung , 1928 .

[6]  Anthony Ralston,et al.  Mathematical Methods for Digital Computers , 1960 .

[7]  L. H. Thomas Computation of one‐dimensional compressible flows including shocks , 1954 .

[8]  George E. Forsythe,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[9]  L. Richardson,et al.  The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices , 1927 .

[10]  R. Sauer,et al.  Anfangswertprobleme bei Partiellen Differentialgleichungen , 1952 .

[11]  W. Wasow,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[12]  Robert H. Moore A Runge-Kutta procedure for the goursat problem in hyperbolic partial differential equations , 1961 .

[13]  D. R. Hartree Numerical analysis , 1958 .

[14]  A. Douglis,et al.  Some existence theorems for hyperbolic systems of partial differential equations in two independent variables , 1952 .