Application of Real Ant Colony Optimization Algorithm to Solve Space Fractional Heat Conduction Inverse Problem

In this paper inverse problem for the space fractional heat conduction equation is investigated. In order to reconstruct the heat transfer coefficient, functional defining error of approximate solution is created. To minimize this functional the Real Ant Colony Optimization algorithm is used. The paper presents examples to illustrate the accuracy and stability of the presented algorithm.

[1]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[2]  M. Meerschaert,et al.  Finite difference approximations for fractional advection-dispersion flow equations , 2004 .

[3]  Damian Słota,et al.  RECONSTRUCTION OF THE BOUNDARY CONDITION FOR THE HEAT CONDUCTION EQUATION OF FRACTIONAL ORDER , 2015 .

[4]  Damian Slota,et al.  Application of Intelligent Algorithm to Solve the Fractional Heat Conduction Inverse Problem , 2015, ICIST.

[5]  Jordan Hristov,et al.  AN APPROXIMATE SOLUTION TO THE TRANSIENT SPACE-FRACTIONAL DIFFUSION EQUATION Integral-Balance Approach, Optimization Problems, and Analyzes , 2017 .

[6]  Jacek Smolka,et al.  Application of Bezier surfaces to the 3-D inverse geometry problem in continuous casting , 2011 .

[7]  Krzysztof Grysa,et al.  Different finite element approaches for inverse heat conduction problems , 2010 .

[8]  Diego A. Murio,et al.  Time fractional IHCP with Caputo fractional derivatives , 2008, Comput. Math. Appl..

[9]  B. Tomas Johansson,et al.  A Meshless Regularization Method for a Two-Dimensional Two-Phase Linear Inverse Stefan Problem , 2013 .

[10]  Masahiro Yamamoto,et al.  Coefficient inverse problem for a fractional diffusion equation , 2013 .

[11]  T. Wei,et al.  A new regularization method for solving a time-fractional inverse diffusion problem , 2011 .

[12]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[13]  Jordan Hristov,et al.  Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s Kernel to the Caputo-Fabrizio time-fractional derivative , 2016 .

[14]  Damian Słota,et al.  Experimental Verification of Selected Artificial Intelligence Algorithms Used for Solving the Inverse Stefan Problem , 2014 .

[15]  D. S. Ivaschenko,et al.  Numerical methods for solving inverse problems for time fractional diffusion equation with variable coefficient , 2009 .

[16]  Ting Wei,et al.  Reconstruction of a time-dependent source term in a time-fractional diffusion equation , 2013 .

[17]  Y. C. Hon,et al.  An inverse problem for fractional diffusion equation in 2-dimensional case: Stability analysis and regularization , 2012 .

[18]  William Rundell,et al.  An inverse problem for a one-dimensional time-fractional diffusion problem , 2012 .

[19]  Diego A. Murio,et al.  Stable numerical solution of a fractional-diffusion inverse heat conduction problem , 2007, Comput. Math. Appl..

[20]  J. Hristov An inverse Stefan problem relevant to boilover: Heat balance integral solutions and analysis , 2007, 1012.2534.

[21]  M. Meerschaert,et al.  Finite difference methods for two-dimensional fractional dispersion equation , 2006 .

[22]  Diego A. Murio,et al.  Stable numerical evaluation of Grünwald–Letnikov fractional derivatives applied to a fractional IHCP , 2009 .

[23]  Carlos E. Mejía,et al.  Generalized time fractional IHCP with Caputo fractional derivatives , 2008 .

[24]  Damian Słota,et al.  Restoring boundary conditions in the solidification of pure metals , 2011 .

[25]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[26]  I. Podlubny Fractional differential equations , 1998 .

[27]  T. Wei,et al.  A New Regularization Method for the Time Fractional Inverse Advection-Dispersion Problem , 2011, SIAM J. Numer. Anal..

[28]  Fangfang Dou,et al.  Kernel-based approximation for Cauchy problem of the time-fractional diffusion equation , 2012 .