A New Extended Structural Parameter Set for Stochastic Molecular Reconstruction: Application to Asphaltenes

The modeling of complex hydrocarbon mixtures is a current issue. The presently available analytical techniques are insufficient alone to fully characterize the molecular details of heavy oil fractions to the level for new development of a molecular-level kinetic model. Stochastic reconstruction (SR) methods which build a set of molecules that mimic the properties of complex mixtures by using partial analytical data help to overcome this drawback. Although the classical SR algorithm produces reasonable molecule sets for light and medium fractions, performance degrades for heavier fractions. The main reason for this is the lack of structural parameters needed to define the variations in side-chain and ring configurations. As an extension, a novel structural parameter set including specific parameters for ring and chain configurations was implemented to the SR algorithm. In addition to this, in order to ensure an extensive structural connection between the generated molecules and the experimental data, the 1...

[1]  Matthew Neurock,et al.  CPU Issues in the Representation of the Molecular Structure of Petroleum Resid through Characterization, Reaction, and Monte Carlo Modeling , 1994 .

[2]  J. Edwards A Review of Applications of NMR Spectroscopy in the Petroleum Industry , 2011 .

[3]  J. Ancheyta,et al.  On the detailed solution and application of the continuous kinetic lumping modeling to hydrocracking of heavy oils , 2011 .

[4]  I. Wiehe A Solvent-Resid Phase Diagram for Tracking Resid Conversion , 1992 .

[5]  Li Li,et al.  Catalytic pyrolysis of heavy oils : 8-lump kinetic model , 2006 .

[6]  V. Calemma,et al.  Characterization of asphaltenes molecular structure , 1998 .

[7]  E. Hirsch,et al.  Integrated structural analysis. Method for the determination of average structural parameters of petroleum heavy ends , 1970 .

[8]  Leonard Nyadong,et al.  Heavy Petroleum Composition. 5. Compositional and Structural Continuum of Petroleum Revealed , 2013 .

[9]  Felipe López-Isunza,et al.  5-Lump kinetic model for gas oil catalytic cracking , 1999 .

[10]  Alan G. Marshall,et al.  Heavy Petroleum Composition. 1. Exhaustive Compositional Analysis of Athabasca Bitumen HVGO Distillates by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: A Definitive Test of the Boduszynski Model , 2010 .

[11]  C. A. Bennett,et al.  Molecular-Level Kinetic Modeling of Resid Pyrolysis , 2015 .

[12]  O. Mullins,et al.  Asphaltene Molecular Size and Structure , 1999 .

[13]  Jinsen Gao,et al.  Seven-lump kinetic model for catalytic pyrolysis of heavy oil , 2007 .

[14]  Alan G. Marshall,et al.  Heavy Petroleum Composition. 2. Progression of the Boduszynski Model to the Limit of Distillation by Ultrahigh-Resolution FT-ICR Mass Spectrometry , 2010 .

[15]  Alternate use of heavy hydrotreatment and visbreaker naphthas by incorporation into diesel , 2007 .

[16]  Zhikai Cao,et al.  Modeling and optimization of an industrial hydrocracking unit to improve the yield of diesel or kerosene , 2011 .

[17]  R. Zare,et al.  Advances in Asphaltene Science and the Yen–Mullins Model , 2012 .

[18]  O. Mullins Sulfur and Nitrogen Molecular Structures in Asphaltenes and Related Materials Quantified by XANES Spectroscopy , 1995 .

[19]  C. S. Hsu,et al.  Compositional space boundaries for organic compounds. , 2012, Analytical chemistry.

[20]  O. Mullins,et al.  Determination of the chemical environment of sulphur in petroleum asphaltenes by X-ray absorption spectroscopy , 1992 .

[21]  Karen Schou Pedersen,et al.  PVT calculations on petroleum reservoir fluids using measured and estimated compositional data for the plus fraction , 1992 .

[22]  O. Mullins,et al.  Determination of the Nitrogen Chemical Structures in Petroleum Asphaltenes Using XANES Spectroscopy , 1993 .

[23]  S. Jaffe Kinetics of Heat Release in Petroleum Hydrogenation , 1974 .

[24]  Jan Verstraete,et al.  A Monte Carlo modeling methodology for the simulation of hydrotreating processes , 2012 .

[25]  Oliver C. Mullins,et al.  Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. , 2015, Journal of the American Chemical Society.

[26]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[27]  R. J. Quann,et al.  Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures , 1992 .

[28]  R. Ocone,et al.  Continuum lumping kinetics of complex reactive systems , 2012 .

[29]  Jichang Liu,et al.  A Delayed Coking Model Built Using the Structure-Oriented Lumping Method , 2012 .

[30]  M. Gray,et al.  Quantitative Evidence for Bridged Structures in Asphaltenes by Thin Film Pyrolysis , 2011 .

[31]  Stephen B. Jaffe,et al.  Extension of structure-oriented lumping to vacuum residua , 2005 .

[32]  Nan Zhang,et al.  Molecular components-based representation of petroleum fractions , 2011 .

[33]  Jan Verstraete,et al.  Molecular Reconstruction of Petroleum Fractions: Application to Vacuum Residues from Different Origins , 2013 .

[34]  M. Yasar,et al.  Effect of asphaltenes on pyrolysis kinetics of saturates , 2000 .

[35]  R. Zare,et al.  Evidence for Island Structures as the Dominant Architecture of Asphaltenes , 2011 .

[36]  K. Standing,et al.  Heavy Petroleum Composition. 3. Asphaltene Aggregation , 2013 .

[37]  Liang-Sun Lee,et al.  Four-lump kinetic model for fluid catalytic cracking process , 1989 .

[38]  M. A. Gürkaynak,et al.  Investigation of glass transition temperatures of Turkish asphaltenes , 2007 .

[39]  Jorge A. Marrero,et al.  Group-contribution based estimation of pure component properties , 2001 .

[40]  S. E. Voltz,et al.  A lumping and reaction scheme for catalytic cracking , 1976 .

[41]  Paul J. Flory,et al.  Molecular Size Distribution in Linear Condensation Polymers1 , 1936 .

[42]  William A. Peters,et al.  Rationalization for the molecular weight distributions of Coal pyrolysis liquids , 1990 .

[43]  C. H. Whitson,et al.  Application of the gamma distribution model to molecular weight and boiling point data for petroleum fractions , 1990 .

[44]  Matthew Neurock,et al.  Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling , 1994 .

[45]  S. Akmaz,et al.  Investigation of the Molecular Structure of Turkish Asphaltenes , 2009 .

[46]  Alan G. Marshall,et al.  Heavy Petroleum Composition. 4. Asphaltene Compositional Space , 2013 .