Hierarchically ordered networks comprising crystalline ZrO2 tubes through sol–gel mineralization of eggshell membranes

A facile sol–gel coating procedure has been successfully applied for the ZrO2 coating of eggshell membranes (ESM), resulting in hierarchically ordered thin films with a macroporous network structure comprising crystalline ZrO2 tubes. This hierarchical material, which was obtained through sol–gel mineralization of the ESM template and subsequent calcination at 600 °C, was characterized by XRD, SEM, TEM, HRTEM, and nitrogen sorption measurements. It has been shown that this ZrO2 material exhibits a macroscopic morphology of a film with a thickness about 15 µm; the film has a microstructure of macroporous networks composed of interwoven ZrO2 microtubes with diameters less than 1.0 µm; the tube walls consist of tetragonal ZrO2 nanocrystals with an average crystallite size about 6 nm. It shows a specific surface area of 55 m2 g−1 and a BET average pore size of 7.0 nm, which is mostly due to the ZrO2 nanocrystals constituting the tube walls. It has also been shown that calcination of the initial ESM/zirconium precursor hybrid at 700 °C resulted in significant fusion between neighboring ZrO2 tubes accompanying a tetragonal-to-monoclinic phase transformation of zirconia.

[1]  Dong Yang,et al.  Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes , 2002 .

[2]  Dapeng Xu,et al.  An Array of Concentric Composite Nanostructure of Metal Nanowires Encapsulated in Zirconia Nanotubes: Preparation, Characterization, and Magnetic Properties , 2002 .

[3]  Yajun Wang,et al.  Zeolitic Tissue Through Wood Cell Templating , 2002 .

[4]  Erik Dujardin,et al.  Bio-inspired materials chemistry , 2002 .

[5]  D. Suh,et al.  Synthesis of High-Surface-Area Zirconia Aerogels with a Well-Developed Mesoporous Texture Using CO2 Supercritical Drying , 2002 .

[6]  K. Arihara,et al.  Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. , 2002, Bioresource technology.

[7]  S. Mann,et al.  Higher order construction of molecule-based magnets , 2001 .

[8]  Younggeun Park,et al.  Synthesis of Large Monolithic Zeolite Foams with Variable Macropore Architectures , 2001 .

[9]  Markus Antonietti,et al.  Sol−Gel Nanocoating: An Approach to the Preparation of Structured Materials , 2001 .

[10]  Gregory J. Exarhos,et al.  Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures , 2001 .

[11]  A. Stein,et al.  Gems of Chemistry and Physics: Macroporous Metal Oxides with 3D Order , 2001 .

[12]  O. Velev,et al.  Structured Metallic Films for Optical and Spectroscopic Applications via Colloidal Crystal Templating , 2001 .

[13]  M. Antonietti,et al.  Modification of TiO2 Network Structures Using a Polymer Gel Coating Technique , 2001 .

[14]  V. Colvin,et al.  Thin Films of Macroporous Metal Oxides , 2001 .

[15]  R. Caruso,et al.  Cellulose acetate templates for porous inorganic network fabrication. , 2000 .

[16]  A. Caplan,et al.  Monoclonal antibodies to mineralized matrix molecules of the avian eggshell. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[17]  J. Fripiat,et al.  Physical Chemistry of the Thermal Transformation of Mesoporous and Microporous Zirconia , 2000 .

[18]  S. Mann,et al.  The Chemistry of Form. , 2000, Angewandte Chemie.

[19]  S. Mann,et al.  Template Mineralization of Ordered Macroporous Chitin−Silica Composites Using a Cuttlebone-Derived Organic Matrix , 2000 .

[20]  M. McKee,et al.  Identification and localization of lysozyme as a component of eggshell membranes and eggshell matrix. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[21]  F. Meldrum,et al.  Bioskeletons as Templates for Ordered, Macroporous Structures , 2000 .

[22]  M. Antonietti,et al.  Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. , 2000 .

[23]  Bradley F. Chmelka,et al.  Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework , 1999 .

[24]  J. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[25]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[26]  M. Antonietti,et al.  Porous ’coral-like‘ TiO2 structures produced by templating polymer gels. , 1998 .

[27]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[28]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[29]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[30]  S. Mann,et al.  Morphosynthesis of Macroporous Silica Frameworks in Bicontinuous Microemulsions , 1998 .

[31]  A. Imhof,et al.  Ordered macroporous materials by emulsion templating , 1997, Nature.

[32]  Stephen Mann,et al.  Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases , 1997, Nature.

[33]  S. Mann,et al.  Crystal Tectonics: Construction of Reticulated Calcium Phosphate Frameworks in Bicontinuous Reverse Microemulsions , 1994, Science.