A weight-formula for all highest weight modules, and a higher order parabolic category $\mathcal{O}$

. Let g be a complex Kac–Moody algebra, with Cartan subalgebra h . Also fix a weight λ ∈ h ∗ . For M ( λ ) ։ V an arbitrary highest weight g -module, we provide a cancellation-free, non-recursive formula for the weights of V . This is novel even in finite type, and is obtained from λ and a collection H = H V of independent sets in the Dynkin diagram of g that are associated to V . Our proofs use and reveal a finite family (for each λ ) of “higher order Verma modules” M ( λ, H ) – these are all of the universal modules for weight-considerations. They (i) generalize and subsume parabolic Verma modules M ( λ, J ), and (ii) have pairwise distinct weight-sets, which exhaust the weight-sets of all modules M ( λ ) ։ V . As an application, we explain the sense in which the modules M ( λ ) of Verma and M ( λ, J V ) of Lepowsky are respectively the zeroth and first order upper-approximations of every V , and continue to higher order upper-approximations M k ( λ, H V ) (and to lower-approximations). We also determine the k th order integrability of V , for all k > 0. We then introduce the category O H ⊆ O , which is a higher order parabolic analogue that contains the higher order Verma modules M ( λ, H ). We show that O H has enough projectives, and also initiate the study of BGG reciprocity, by proving it for all O H over g = sl ⊕ n 2 . Finally, we provide a BGG resolution for the universal modules M ( λ, H ) in certain cases; this yields a Weyl-type character formula for them, and involves the action of a parabolic Weyl semigroup.

[1]  Wei Xiao,et al.  The Jantzen conjecture for singular characters , 2021, Communications in Algebra.

[2]  G. K. Teja Moving between weights of weight modules , 2020, 2012.07775.

[3]  W. Xiao,et al.  Jantzen coefficients and simplicity of generalized Verma modules , 2020 .

[4]  W. Xiao Janzten coefficients and Blocks of category $\mathcal{O}^\mathfrak{p}$ , 2020, 2004.08756.

[5]  A. Khare,et al.  THE WEIGHTS OF SIMPLE MODULES IN CATEGORY O FOR KAC–MOODY ALGEBRAS , 2019 .

[6]  A. Khare,et al.  Faces of highest weight modules and the universal Weyl polyhedron , 2016, 1611.00114.

[7]  A. Khare,et al.  Characters of highest weight modules and integrability , 2016 .

[8]  A. Khare Faces and maximizer subsets of highest weight modules , 2013, 1301.1140.

[9]  A. Khare Standard parabolic subsets of highest weight modules , 2014, 1409.4133.

[10]  A. Rocha-Caridi SPLITTING CRITERIA FOR g-MODULES INDUCED FROM A PARABOLIC AND THE BERNSTEIN-GELFAND-GELFAND RESOLUTION OF A FINITE DIMENSIONAL, IRREDUCIBLE g-MODULE , 2010 .

[11]  J. Humphreys Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .

[12]  David E. Speyer Powers of Coxeter elements in infinite groups are reduced , 2007, 0710.3188.

[13]  E. Frenkel,et al.  Localization of g^-modules on the affine Grassmannian , 2005, math/0512562.

[14]  Alexander Postnikov,et al.  Permutohedra, Associahedra, and Beyond , 2005, math/0507163.

[15]  C. Stroppel Category : Quivers and endomorphism rings of projectives , 2003 .

[16]  E. Backelin KOSZUL DUALITY FOR PARABOLIC AND SINGULAR CATEGORY O , 1999 .

[17]  Wolfgang Soergel,et al.  Koszul Duality Patterns in Representation Theory , 1996 .

[18]  J. Lawrence Polytope volume computation , 1991 .

[19]  W. Soergel Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .

[20]  Shrawan Kumar Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras , 1990 .

[21]  Gennady Lyubeznik,et al.  A new explicit finite free resolution of ideals generated by monomials in an R-sequence , 1988 .

[22]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[23]  D. Collingwood,et al.  The Kazhdan-Lusztig conjecture for generalized Verma modules , 1987 .

[24]  Vinay V. Deodhar On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials , 1987 .

[25]  A. N. Varchenko,et al.  Combinatorics and topology of the disposition of affine hyperplanes in real space , 1987 .

[26]  R. Howlett Coxeter Groups and M‐Matrices , 1982 .

[27]  Masaki Kashiwara,et al.  Kazhdan-Lusztig conjecture and holonomic systems , 1981 .

[28]  D. Kazhdan,et al.  Representations of Coxeter groups and Hecke algebras , 1979 .

[29]  J. Jantzen Moduln mit einem höchsten Gewicht , 1979 .

[30]  J. Lepowsky Generalized Verma modules, the Cartan-Helgason theorem, and the Harish-Chandra homomorphism , 1977 .

[31]  J. Lepowsky,et al.  Lie algebra homology and the Macdonald-Kac formulas , 1976 .

[32]  È. Vinberg,et al.  Discrete groups that are generated by reflections , 1971 .

[33]  Daya-Nand Verma,et al.  Structure of certain induced representations of complex semisimple Lie algebras , 1968 .

[34]  M. Atiyah,et al.  A Lefschetz Fixed Point Formula for Elliptic Complexes: I , 1967 .

[35]  B. Kostant A FORMULA FOR THE MULTIPLICITY OF A WEIGHT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H. S. M. Coxeter,et al.  The Complete Enumeration of Finite Groups of the Form Ri2=(RiRj)kij=1 , 1935 .

[37]  H. Weyl Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. III , 1926 .

[38]  H. Weyl,et al.  Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I , 1926 .

[39]  E Cline At Worcester,et al.  Journal Fur Die Reine Und Angewandte Mathematik Finite Dimensional Algebras and Highest Weight Categories ') , 2022 .