A weight-formula for all highest weight modules, and a higher order parabolic category $\mathcal{O}$
暂无分享,去创建一个
[1] Wei Xiao,et al. The Jantzen conjecture for singular characters , 2021, Communications in Algebra.
[2] G. K. Teja. Moving between weights of weight modules , 2020, 2012.07775.
[3] W. Xiao,et al. Jantzen coefficients and simplicity of generalized Verma modules , 2020 .
[4] W. Xiao. Janzten coefficients and Blocks of category $\mathcal{O}^\mathfrak{p}$ , 2020, 2004.08756.
[5] A. Khare,et al. THE WEIGHTS OF SIMPLE MODULES IN CATEGORY O FOR KAC–MOODY ALGEBRAS , 2019 .
[6] A. Khare,et al. Faces of highest weight modules and the universal Weyl polyhedron , 2016, 1611.00114.
[7] A. Khare,et al. Characters of highest weight modules and integrability , 2016 .
[8] A. Khare. Faces and maximizer subsets of highest weight modules , 2013, 1301.1140.
[9] A. Khare. Standard parabolic subsets of highest weight modules , 2014, 1409.4133.
[10] A. Rocha-Caridi. SPLITTING CRITERIA FOR g-MODULES INDUCED FROM A PARABOLIC AND THE BERNSTEIN-GELFAND-GELFAND RESOLUTION OF A FINITE DIMENSIONAL, IRREDUCIBLE g-MODULE , 2010 .
[11] J. Humphreys. Representations of Semisimple Lie Algebras in the BGG Category O , 2008 .
[12] David E. Speyer. Powers of Coxeter elements in infinite groups are reduced , 2007, 0710.3188.
[13] E. Frenkel,et al. Localization of g^-modules on the affine Grassmannian , 2005, math/0512562.
[14] Alexander Postnikov,et al. Permutohedra, Associahedra, and Beyond , 2005, math/0507163.
[15] C. Stroppel. Category : Quivers and endomorphism rings of projectives , 2003 .
[16] E. Backelin. KOSZUL DUALITY FOR PARABOLIC AND SINGULAR CATEGORY O , 1999 .
[17] Wolfgang Soergel,et al. Koszul Duality Patterns in Representation Theory , 1996 .
[18] J. Lawrence. Polytope volume computation , 1991 .
[19] W. Soergel. Kategorie , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe , 1990 .
[20] Shrawan Kumar. Bernstein-Gelfand-Gelfand resolution for arbitrary Kac-Moody algebras , 1990 .
[21] Gennady Lyubeznik,et al. A new explicit finite free resolution of ideals generated by monomials in an R-sequence , 1988 .
[22] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[23] D. Collingwood,et al. The Kazhdan-Lusztig conjecture for generalized Verma modules , 1987 .
[24] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings II. The parabolic analogue of Kazhdan-Lusztig polynomials , 1987 .
[25] A. N. Varchenko,et al. Combinatorics and topology of the disposition of affine hyperplanes in real space , 1987 .
[26] R. Howlett. Coxeter Groups and M‐Matrices , 1982 .
[27] Masaki Kashiwara,et al. Kazhdan-Lusztig conjecture and holonomic systems , 1981 .
[28] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[29] J. Jantzen. Moduln mit einem höchsten Gewicht , 1979 .
[30] J. Lepowsky. Generalized Verma modules, the Cartan-Helgason theorem, and the Harish-Chandra homomorphism , 1977 .
[31] J. Lepowsky,et al. Lie algebra homology and the Macdonald-Kac formulas , 1976 .
[32] È. Vinberg,et al. Discrete groups that are generated by reflections , 1971 .
[33] Daya-Nand Verma,et al. Structure of certain induced representations of complex semisimple Lie algebras , 1968 .
[34] M. Atiyah,et al. A Lefschetz Fixed Point Formula for Elliptic Complexes: I , 1967 .
[35] B. Kostant. A FORMULA FOR THE MULTIPLICITY OF A WEIGHT. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[36] H. S. M. Coxeter,et al. The Complete Enumeration of Finite Groups of the Form Ri2=(RiRj)kij=1 , 1935 .
[37] H. Weyl. Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. III , 1926 .
[38] H. Weyl,et al. Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen. I , 1926 .
[39] E Cline At Worcester,et al. Journal Fur Die Reine Und Angewandte Mathematik Finite Dimensional Algebras and Highest Weight Categories ') , 2022 .