A Plane Symmetric 6 R Foldable Ring

The design of a deployable structure which deploys from a compact bundle of six parallel bars to a rectangular ring is considered. The structure is a plane symmetric Bricard linkage. The internal mechanism is described in terms of its Denavit-Hartenberg parameters; the nature of its single degree of freedom is examined in detail by determining the exact structure of the system of equations governing its movement; a range of design parameters for building feasible mechanisms is determined numerically; and polynomial continuation is used to design rings with certain specified desirable properties.

[1]  A. Viquerat Polynomial continuation in the design of deployable structures , 2012 .

[2]  Zhong You,et al.  Threefold-symmetric Bricard linkages for deployable structures , 2005 .

[3]  Yan Chen,et al.  Design of structural mechanisms , 2003 .

[4]  Andrew J. Sommese,et al.  Numerical Decomposition of the Solution Sets of Polynomial Systems into Irreducible Components , 2000, SIAM J. Numer. Anal..

[5]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[6]  Laurentiu Racila,et al.  Spatial properties of Wohlhart symmetric mechanism , 2010 .

[7]  J. M. Hedgepeth,et al.  Spoked wheels to deploy large surfaces in space-weight estimates for solar arrays. Final report , 1974 .

[8]  A. Morgan,et al.  Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics , 1990 .

[9]  Yan Chen,et al.  Square deployable frames for space applications. Part 2: Realization , 2007 .

[10]  Karl Wohlhart,et al.  The two types of the orthogonal bricard linkage , 1993 .

[11]  E. R. Maki,et al.  The Creation of Mechanisms According to Kinematic Structure and Function , 1979 .

[12]  Sergio Pellegrino,et al.  Closed-Loop Deployable Structures , 2003 .

[13]  Sergio Pellegrino,et al.  SAR Advanced Deployable Structure , 2000 .

[14]  Zhong You,et al.  Two-fold symmetrical 6R foldable frame and its bifurcations , 2009 .

[15]  Tien-Yien Li,et al.  Mixed Volume Computation for Semi-Mixed Systems , 2003, Discret. Comput. Geom..

[16]  Andrew J. Sommese,et al.  Numerical Homotopies to Compute Generic Points on Positive Dimensional Algebraic Sets , 2000, J. Complex..

[17]  R. Bricard Mémoire sur la théorie de l'octaèdre articulé , 1897 .

[18]  Jacques-Louis Lions,et al.  Handbook of numerical analysis (volume VIII) , 2002 .

[19]  J.Eddie Baker,et al.  An analysis of the Bricard linkages , 1980 .

[20]  W W Gan,et al.  Numerical Approach to the Kinematic Analysis of Deployable Structures Forming a Closed Loop , 2006 .

[21]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[22]  Kinematic bifurcations of closed-loop deployable frames , 2005 .

[23]  A. Morgan Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems , 1987 .