Examination of Au/SnO2 core-shell architecture nanoparticle for low temperature gas sensing applications

[1]  Yeon-Tae Yu,et al.  Synthesis of Au/SnO2 core―shell structure nanoparticles by a microwave-assisted method and their optical properties , 2011 .

[2]  Zeng Wen,et al.  Gas-sensing properties of SnO2–TiO2-based sensor for volatile organic compound gas and its sensing mechanism , 2010 .

[3]  Yeon-Tae Yu,et al.  Efficient complete oxidation of acetaldehyde into CO2 over Au/TiO2 core-shell nano catalyst under UV and visible light irradiation. , 2009, Journal of nanoscience and nanotechnology.

[4]  A. T. S. Wee,et al.  Gas sensing properties of tin oxide nanostructures synthesized via a solid-state reaction method , 2008, Nanotechnology.

[5]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[6]  Rashmi,et al.  Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique , 2007 .

[7]  Yeon-Tae Yu,et al.  Synthesis of Au/TiO2 Core–Shell Nanoparticles from Titanium Isopropoxide and Thermal Resistance Effect of TiO2 Shell , 2007 .

[8]  G. Hunter,et al.  Reactively sputtered titania films as high temperature carbon monoxide sensors , 2005 .

[9]  N. Yamazoe,et al.  Preparation of grain size-controlled tin oxide sols by hydrothermal treatment for thin film sensor application , 2004 .

[10]  S. P. Lee,et al.  CO gas sensors operating at room temperature , 2003 .

[11]  Joan Ramon Morante,et al.  Influence of the catalytic introduction procedure on the nano-SnO2 gas sensor performances , 2001 .

[12]  P. Mulvaney,et al.  Au@SnO2 Core–Shell Nanocapacitors , 2000 .

[13]  Meilin Liu,et al.  Effect of particle size and dopant on properties of SnO2-based gas sensors , 2000 .

[14]  Nidhi Gupta,et al.  Microcalorimetry, adsorption, and reaction studies of CO, O2, and CO + O2 over Au/Fe2O3, Fe2O3, and polycrystalline gold catalysts , 1999 .

[15]  A. I. Kozlov,et al.  Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide , 1999 .

[16]  A. I. Kozlov,et al.  A new approach to active supported Au catalysts , 1999 .

[17]  S. Dmitriev,et al.  Processes development for low cost and low power consuming SnO2 thin film gas sensors (TFGS) , 1999 .

[18]  A. R. Phani X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor , 1997 .

[19]  M. Haruta,et al.  FTIR Study of Carbon Monoxide Oxidation and Scrambling at Room Temperature over Gold Supported on ZnO and TiO2. 2 , 1996 .

[20]  K. Colbow,et al.  Effects of surface silver additives on tin oxide thin film gas sensors , 1994, Journal of Materials Science Letters.

[21]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[22]  A. Wokaun,et al.  CO oxidation over Au/ZrO2 catalysts: Activity, deactivation behavior, and reaction mechanism , 1992 .

[23]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[24]  Katsuhiko Ariga,et al.  A Special Issue on : Advanced Materials for Nanoscience and Nanotechnology , 2009 .

[25]  T. Shido,et al.  TAP study on CO oxidation on a highly active Au/Ti (OH)4* catalyst , 2001 .