On the Peterlin approximation for finitely extensible dumbbells

For the simplest non-linear kinetic theory of dilute polymeric solutions (FENE dumbbells), the pre-averaging Peterlin approximation used to derive a macroscopic constitutive equation (FENE-P) is shown to have a significant impact on the statistical and rheological properties of the model. This is illustrated in simulations of transient elongational flows by means of standard and stochastic numerical techniques. (C) 1997 Elsevier Science B.V.

[1]  H. Ch. Öttinger,et al.  Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms , 1995 .

[2]  R. Bird,et al.  Constitutive equations for polymeric liquids , 1995 .

[3]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[4]  Manuel Laso,et al.  2-D time-dependent viscoelastic flow calculations using CONNFFESSIT , 1997 .

[5]  L. Gary Leal,et al.  A new computational method for the solution of flow problems of microstructured fluids. Part 1. Theory , 1992 .

[6]  R. B. Bird,et al.  Transport Properties of Polymeric Liquids , 1992 .

[7]  R. Bird,et al.  On coil–stretch transitions in dilute polymer solutions , 1989 .

[8]  P. J. Dotson,et al.  Polymer solution rheology based on a finitely extensible bead—spring chain model , 1980 .

[9]  M. Crochet,et al.  Numerical simulation of the motion of a sphere in a boger fluid , 1994 .

[10]  K. Morton,et al.  Numerical Solution of Partial Differential Equations , 1995 .

[11]  Oliver G. Harlen,et al.  A split Lagrangian-Eulerian method for simulating transient viscoelastic flows , 1995 .

[12]  L. G. Leal,et al.  Finite-Element simulation of the start-up problem for a viscoelastic fluid in an eccentric rotating cylinder geometry using a third-order upwind scheme , 1993 .

[13]  R. Byron Bird,et al.  From molecular models to the solution of flow problems , 1988 .

[14]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[15]  R. Tanner,et al.  Rheology of Bead-NonLinear Spring Chain Macromolecules , 1989 .

[16]  H. C. Öttinger A model of dilute polymer solutions with hydrodynamic interaction and finite extensibility. I. Basic equations and series expansions , 1987 .

[17]  J. M. Rallison,et al.  Creeping flow of dilute polymer solutions past cylinders and spheres , 1988 .

[18]  J. Wiest,et al.  Finitely extensible bead–spring chain macromolecules in steady elongational flows , 1993 .

[19]  B. Brulé Browian dynamics simulation of finitely extensible bead-spring chains , 1993 .